3x + 3x+2=7290
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngôlãmtân
\(3^{3x}+3^{3x+2}=7290\)
\(3^{3x}+3^{3x}.3^2=7290\)
\(3^{3x}.\left(1+3^2\right)=7290\)
\(3^{3x}.\left(1+9\right)=7290\)
\(3^{3x}.10=7290\)
\(3^{3x}=\frac{7290}{10}\)
\(3^{3x}=729\)
\(3^{3x}=3^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
vậy \(x=2\)
P/S: đừng ai copy bài mình nhé
A) \(\frac{2}{3}-\left(\frac{3}{4}-x\right)=\frac{1}{3}\)
\(\Rightarrow\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}\)
\(\Rightarrow\frac{3}{4}-x=\frac{1}{3}\)
\(\Rightarrow x=\frac{3}{4}-\frac{1}{3}\)
\(\Rightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
B) \(3^{3x}+3^{3x+2}=7290\)
\(\Rightarrow3^{3x}+3^{3x}\times3^2=7290\)
\(\Rightarrow3^{3x}\times\left(1+3^2\right)=7290\)
\(\Rightarrow3^{3x}\times10=7290\)
\(\Rightarrow3^{3x}=7290:10\)
\(\Rightarrow3^{3x}=729\)
\(\Rightarrow3^{3x}=3^6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=6:3\)
\(\Rightarrow x=2\)
Vậy x = 2
_Chúc bạn học tốt_
\(\frac{2}{3}-\left(\frac{3}{4}-x\right)=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}\)
\(x=\frac{5}{12}\)
\(3^{3x}+3^{3x+2}=7290\)
\(3^{3x}\left(1+3^2\right)=7290\)
\(3^{3x}\cdot10=7290\)
\(3^{3x}=729\)
\(3^{3x}=3^6\)
\(\Rightarrow3x=6\)
\(x=2\)
Không cần k nha ! Học tốt ....
\(3^{5x}+3^{5x+2}=7290\)
\(\Leftrightarrow3^{5x}+3^{5x}.9=7290\)
\(\Leftrightarrow3^{5x}\left(1+9\right)=7290\)
\(\Leftrightarrow3^{5x}.10=7290\)
\(\Leftrightarrow3^{5x}=729=3^6\)
\(\Rightarrow5x=6\rightarrow x=\frac{6}{5}\)
học tốt ~~
\(3^x+3^{x+2}=7290\)
\(3^x+3^x.3^2=7290\)
\(3^x.\left(1+9\right)=7290\)
\(3^x.10=7290\)
\(\Rightarrow3^x=729\)
\(\Rightarrow x=6\)
\(3^x+3^{x+2}=7290\Rightarrow3^x.\left(1+3^2\right)=7290\Rightarrow3^x=729=3^6\Rightarrow x=6\)
b) \(3^x\cdot3^2+3^x=7290\)
\(3^x\left(3^2+1\right)=720\)
\(3^x\cdot10=7290\)
\(=>3^x=729=3^6\)
=> \(x=6\)
\(3^x\left(1+3^2\right)=7290\\ \Rightarrow3^x.10=7290\\ \Rightarrow3^x=729=3^6\\ \Rightarrow x=6\)