Gọi $M$ và $N$ là hai điểm di động trên đồ thị $(C)$ của hàm số $y = -x^3+3x^2-x+4$ sao cho tiếp tuyến của $(C)$ tại $M$ và $N$ luôn song song với nhau. Khi đó đường thẳng $MN$ luôn đi qua điểm cố định nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi M a ; a 2 + 2 a + 1 ⇒ M t : x = a
Lại có y ' = 2 x + 2 do đó PTTT tại M là: y = 2 a + 2 x − a + a 2 + 2 a + 1
Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :
\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)
Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)
Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)
Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :
\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)
Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)
Từ đó ta có 2 tiếp tuyến cần tìm là :
\(y=15x-12\sqrt{6}-15\)
\(y=15x+12\sqrt{6}-15\)
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Gọi tọa độ điểm MM, NN lần lượt là M(x1;y1), N(x2;y2)M(x1;y1), N(x2;y2).
Hệ số góc tiếp tuyến của (C)(C) tại MM và NN lần lượt là
k1=y′(x1)=−3x12+6x1−1k1=y′(x1)=−3x12+6x1−1; k2=y′(x2)=−3x22+6x2−1k2=y′(x2)=−3x22+6x2−1
Để tiếp tuyến của (C)(C) tại MM và NN luôn song song với nhau điều kiện là
{k1=k2x1≠x2{k1=k2x1≠x2 ⇔{(x1−x2)[−3(x1+x2)+6]=0x1≠x2⇔{(x1−x2)[−3(x1+x2)+6]=0x1≠x2⇔x1+x2=2⇔x1+x2=2.
Ta có:y1+y2=−(x1+x2)[(x1+x2)2−3x1x2]+3[(x1+x2)2−2x1x2]−(x1+x2)+8y1+y2=−(x1+x2)[(x1+x2)2−3x1x2]+3[(x1+x2)2−2x1x2]−(x1+x2)+8
Do x1+x2=2x1+x2=2 nên y1+y2=−2(4−3x1x2)+3(4−2x1x2)+8=10y1+y2=−2(4−3x1x2)+3(4−2x1x2)+8=10.
Trung điểm của đoạn MNMN là I(1;5)I(1;5). Vậy đường thẳng MNMN luôn đi qua điểm cố định I(1;5)I(1;5).
Ta có \(y'=-3x^2+6x-1\Rightarrow y^n=-6x+6;y^n=0\Leftrightarrow x=1\Rightarrow I\left(1;5\right)\) là điểm uốn của đồ thị (C)
G/s M (xM;yM); N(xN;yN) là 2 điểm di động trên (C)
Tiếp tuyển của (C) tại M,N song song với nhau
=> y'(xM)=y'(xN)
\(\Leftrightarrow-3x^2_M+6x_M-1=-3x_N^2+6x_N-1\)
\(\Leftrightarrow-3\left(x_M-x_N\right)\left(x_N+x_M\right)+6\left(x_M-x_N\right)=0\)
\(\Leftrightarrow\frac{x_M+x_N}{2}=1\left(x_M\ne x_N\right)\)=> I là trung điểm MN
Vậy đường thẳng MN luôn đi qua điểm I cố định