K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Ta có: Tam giác $AHB$ vuông tại $H$ ($AH⊥BC$)
nên $AH^2+HB^2=AB^2$ định lí Pytago
suy ra $AH^2=AB^2-HB^2=AB^2-2^2=AB^2-4$

 Tam giác $AHC$ vuông tại $H$ ($AH⊥BC$)
nên $AH^2+HC^2=AC^2$ định lí Pytago

suy ra $AH^2=AC^2-HC^2=AC^2-8^2=AC^2-64$

Tam giác $ABC$ vuông tại $A$ 
nên $AB^2+AC^2=BC^2$ định lí Pytago

suy ra $AB^2+AC^2=(HB+HC)^2=(2+8)^2=100$

Có: $AH^2=AB^2-4;AH^2=AC^2-64$

Nên $2AH^2=AB^2+AC^2-4-64=100-4-64=32$

suy ra $AH^2=16$ hay $AH=8(cm)$ 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HC\cdot HB\)

\(\Leftrightarrow AH^2=2\cdot8=16\)

hay AH=4(cm)

Vậy: AH=4cm

24 tháng 3 2021

\(BC=BH+HC=2+8=10\left(cm\right)\)

△ABC vuông tại A có \(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2=10^2-6^2=64\\ \Rightarrow AB=8\left(cm\right)\)

14 tháng 2 2022

bạn đăng từng bài nhé

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

3 tháng 8 2021

Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:

\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)

Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:

\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)

Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:

\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)

 

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AC^2=HC\cdot BC\)

nên \(AC^2=20\)

hay \(AC=2\sqrt{5}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
15 tháng 11 2021

Lời giải:

Áp dụng hệ thức lượng trong tam giác vuông:

$AH^2=BH.CH=6.8=48$

$\Rightarrow AH=\sqrt{48}=4\sqrt{3}$ (cm)

a: Xét ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

hay HB=HC

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

\(\widehat{DAH}=\widehat{EAH}\)

Do đó: ΔADH=ΔAEH

Suy ra: HD=HE

hay ΔHDE cân tại H

1 tháng 8 2021

A B C H

a.Xét tam giác ABC và tam giác HBA có:

 ^B chung

^BAC = ^BHA = 90

=> tam giác ABC ~ tam giác HBA (g.g)

b. Áp dụng đl Pytago cho tam giác ABC vuông tại A:

 BC2=AB2+AC2=82+152=289

=>BC=17cm

c.tam giác ABC ~ tam giác HBA

=> AB/HB=BC/BA

=>HB=AB2/BC=82/17=64/17 cm

=>HC=BC-HB=225/17

 

 

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(gt)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(hai cạnh tương ứng)

b) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)

hay AH=3(cm)

Vậy: AH=3cm

c) Xét ΔABC có AB=AC(gt)

nên ΔABC cân tại A(Định nghĩa tam giác cân)

Ta có: ΔABC cân tại A(cmt)

nên \(\widehat{B}=\widehat{C}\)(hai góc ở đáy)

Xét ΔDBH vuông tại D và ΔECH vuông tại E có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(cmt)Do đó: ΔDBH=ΔECH(cạnh huyền-góc nhọn)

⇒HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)