Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=2\cdot8=16\)
hay AH=4(cm)
Vậy: AH=4cm
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng hệ thức : AH^2 = HB . HC = 16 . 9
=> AH = 4 . 3 = 12 cm
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}cm\)
* Áp dụng hệ thức \(AB^2=HB.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
\(CH=BC-BH=10-\dfrac{18}{5}=\dfrac{32}{5}cm\)
bài này ko đủ dữ kiện. nếu bổ sung dữ kiện thì ta có thể tính dc với cách tính của định lý pitago.những bài này thường có 3 dữ kiện trở lên
cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC )
a) CHỨNG MINH GÓC BAH = GÓC CEB
b) CHO AH= 3 cm , BC= 8 cm . TÍNH ĐỘ DÀI AC
c) KẺ HE VUÔNG GÓC AB , HD VUÔNG GÓC AC , CHỨNG MINH AE=AD
d) CHỨNG MINH ED SONG SONG BC
trả lời :
Xét \(\Delta\)ABC vuông tại A , có:
AH là đường cao (H\(\in\)BC)
Ta lại có: BC = HB + HC = 2 + 8 = 10 (cm) (1)
\(\Delta\)ABC vuông tại A
=> BC là cạnh huyền (2)
Từ (1) và (2) => AH = \(\frac{1}{2}\)BC = 4(cm)