K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2023

a) Xét hai tam giác vuông: \(\Delta AMB\) và \(\Delta HMB\) có:

BM là cạnh chung

\(\widehat{ABM}=\widehat{HBM}\) (do BM là phân giác của \(\widehat{ABC}\))

\(\Rightarrow\Delta AMB=\Delta HMB\) (cạnh huyền-góc nhọn)

b) Do \(\Delta AMB=\Delta HMB\) (cmt)

\(\Rightarrow AM=HM\) (hai cạnh tương ứng)

c) \(\Delta MHC\) vuông tại H

\(\Rightarrow MC\) là cạnh huyền nên là cạnh lớn nhất

\(\Rightarrow HM< MC\)

Lại có HM = AM (cmt)

\(\Rightarrow AM< MC\)

3 tháng 4 2017

a) Tam giác ABC vuông tại A có \(BC^2=AB^2+AC^2\)

=>BC2=32+42=25

=>BC=5

Vậy BC=5 cm

b) Xét tam giác BHM vuông tại H và tam giác CKM vuông tại K có

MC=MB( vì M là trung điểm của BC)

CMK=BHM( 2 góc đối đỉnh)

=> tam giác BHM= tam giác CKM ( cạnh huyền- góc nhọn)

c) Xét tam giác HMI vuông tại I có HM>HI ( cạnh huyền lớn nhất) (1)

Có tam giác BHM= tam giác CKM ( câu b)

=>HM=MK (2)

Từ (1) và (2) =>MK>HI

d) Có \(\Delta BHM=\Delta CKM\)( theo câu b)

=> BH=KC

Xét tam giác  BKC có KC+BK>BC ( bất đẳng thức tam giác) (3)

Thay BH=KC vào (3) ta có BH+BK>BC

10 tháng 5 2021

undefined

16 tháng 4 2018

  • Chu Kiều Phương

Bấm vào câu hỏi tương tự 

23 tháng 7 2021

xét tam giác BAM vuông tại M =>  Bm^2+ AM^2=AB^2 (định lý pytago)

                                                => 8^2+Am^2=10^2 => AM^2=36=6^2

xét tam giác BMC vuông tại M  => BM^2 +MC^2 = BC^2

                                                 => 8^2 + 15^2 =BC^2

                                                 => BC^2= 17^2

=> AC=21 . tam giác abc: AB^2+BC^2ko bằng AC^2

=> tam giác abc ko vuông

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có

BM chung

góc ABM=góc KBM

=>ΔBAM=ΔBKM

c: AM=MK

MK<MC

=>AM<MC

d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có

MA=MK

góc AMD=góc KMC

=>ΔMAD=ΔMKC

=>AD=KC

Xét ΔBDC có BA/AD=BK/KC

nên AK//DC