K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCBM có \(\widehat{CBM}=\widehat{CMB}\)

nên ΔCBM cân tại C

c: Xét ΔADB vuông tại A và ΔCDM vuông tại C có 

DA=DC

\(\widehat{ADB}=\widehat{CDM}\)

Do đó: ΔADB=ΔCDM

Suy ra: AB=CM

Xét tứ giác ABCM có 

AB//CM

AB=CM

Do đó; ABCM là hình bình hành

Suy ra: AM=BC

13 tháng 2 2022

bạn ơi còn thiếu so sánh CM và CA, bạn giúp mik vs

 

 

a: BC=8cm

BC>AC

=>góc A>góc B

b: XétΔABD có

AC vừa là đường cao, vừa là trung tuyến

=>ΔABD cân tại A

c: GB+2GC=GB+GA>AB

8 tháng 2 2022

a. Áp dụng định lý pitago, ta có:

\(BC^2=AB^2+AC^2\)

\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

\(C_{ABC}=6+8+10=24cm\)

b. xét tam giác vuông ABD và tam giác vuông BDM, có:

B : góc chung

AD: cạnh chung

Vậy  tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )

 

8 tháng 2 2022

có vẽ hình nha mọi người

 

a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔABD=ΔEBD

b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

c: Xét ΔADI vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADI}=\widehat{EDC}\)

Do đó:ΔADI=ΔEDC

Suy ra: AI=EC

Ta có: BA+AI=BI

BE+EC=BC

mà BA=BE

và AI=EC

nên BI=BC

hayΔBIC cân tại B

d: Ta có: AD=DE

mà DE<DC

nên AD<DC

1 tháng 3 2022

Cảm ơn bạn nhìu nha

 

27 tháng 4 2020

sjscjsc

Bài làm

A B C M D I

a) Xét tam giác ABD và tam giác MBD có: 

AB = AM ( gt )

\(\widehat{ABD}=\widehat{DBC}\)( Do BD phân giác )

Cạnh BD chung

=>Tam giác ABD = tam giác MBD ( c.g.c )

b) Vì tam giác ABD = tam giác MBD ( cmt )

=> \(\widehat{BAD}=\widehat{BMD}\)

Mà \(\widehat{BAD}=90^0\)

=> \(\widehat{BAD}=\widehat{BMD}=90^0\)

=> DM vuông góc với BC

d) Gọi AO là tia đối của tia AB

Xét tam giác ABC có:

\(\widehat{OAC}=\widehat{ABC}+\widehat{BCA}\)

=> \(\widehat{OAC}>\widehat{BCA}\)                              (1)

Ta có: \(\widehat{OAC}+\widehat{BAC}=180^0\)( hai góc kề bù )

        \(\widehat{CMD}+\widehat{BMD}=180^0\)( hai góc kề bù )

Mà \(\widehat{BAC}=\widehat{BMD}\)( cmt )

=> \(\widehat{OAC}=\widehat{CMD}\)                     (2)

Từ (1) và (2) => \(\widehat{CMD}>\widehat{BCA}\)

Xét tam giác MDC có:

\(\widehat{CMD}>\widehat{BCA}\)

Theo quan hệ giữa góc và cạnh đối diện có:

DC > DM

Mà DM > AD ( Do tam giác ABD = tam giác MBD )

=> DC > AD 

Vậy DC > AD.

d) Xét tam giác ABI và tam giác MBI có:

AB = AM ( gt )

\(\widehat{ABI}=\widehat{MBI}\)( Do BD phân giác )

BI chung

=> Tam giác ABI = tam giác MBI ( c.g.c )

=> \(\widehat{BIA}=\widehat{BIM}\)

Mà ​\(\widehat{BIA}+\widehat{BIM}=180^0\)​( Hai góc kề bù )

=> \(\widehat{BIA}=\widehat{BIM}=\frac{180^0}{2}=90^0\)

=> BI vuông góc AM                                   (3)

Vì tam giác ABI = tam giác MBI ( cmt )

=> AI = IM                                                  (4)

Từ (3) và (4) => BI là trung trực của AM

Mà I thuộc BD

=> BD là đường trung trực của AM ( đpcm )

# Học tốt #

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

=>ΔDAK=ΔDHC

=>góc ADK=góc HDC

=>góc HDC+góc KDC=180 độ

=>K,D,H thẳng hàng

a: Xét ΔABM vuông tại A và ΔHBM vuông tại H có

BM chung

\(\widehat{ABM}=\widehat{HBM}\)

Do đó: ΔABM=ΔHBM

Suy ra: MA=MH

b: Ta có: MA=MH

mà MH<MC

nên MA<MC

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có

BM chung

góc ABM=góc KBM

=>ΔBAM=ΔBKM

c: AM=MK

MK<MC

=>AM<MC

d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có

MA=MK

góc AMD=góc KMC

=>ΔMAD=ΔMKC

=>AD=KC

Xét ΔBDC có BA/AD=BK/KC

nên AK//DC

13 tháng 5 2018

a) Xét tam giâc ABC

có: AB< AC ( 4 cm < 6 cm)

=> góc ACB < góc góc ABC ( quan hệ cạnh với góc đối diện)

b) Xét tam giác ABM vuông tại A và tam giác CDM vuông tại C

có: AM = CM ( gt)

góc AMB = góc CMD ( đối đỉnh)

\(\Rightarrow\Delta ABM=\Delta CDM\left(cgv-gn\right)\)

c) ta có: \(AM=CM=\frac{AC}{2}=\frac{6}{2}=3cm\)

\(\Rightarrow AM=CM=3cm\)

Xét tam giác ABM vuông tại A

có: \(AB^2+AM^2=BM^2\left(py-ta-go\right)\)

thay số: \(4^2+3^2=BM^2\)

          \(BM^2=25\)

\(\Rightarrow BM=5cm\)

Xét tam giác ABC

có: BN = CN (gt)

=> AN là đường trung tuyến của BC

có: AM = CM (gt)

=> BM là đường trung tuyến của AC

mà AN cắt BM tại G

=> G là trọng tâm của\(\Delta ABC\)( định lí)

\(\Rightarrow\frac{GM}{BM}=\frac{1}{3}\)( định lí)

thay số: \(\frac{GM}{5}=\frac{1}{3}\Leftrightarrow GM=\frac{1}{3}.5=\frac{5}{3}cm\)

\(\Rightarrow GM=\frac{5}{3}cm\)