Cho A = 3n + 5/n+4
Tìm n € z để A có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) Ta có :
\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)
Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)
Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
Suy ra :
\(4n-3\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(n\) | \(1\) | \(\frac{1}{2}\) | \(\frac{5}{4}\) | \(\frac{1}{4}\) | \(\frac{3}{2}\) | \(0\) | \(\frac{9}{4}\) | \(\frac{-3}{4}\) |
Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)
Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên
Chúc bạn học tốt ~
\(b)\) Ta có :
\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi )
Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN
\(\Rightarrow\)\(4n-3=-1\)
\(\Leftrightarrow\)\(4n=2\)
\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên )
\(\Rightarrow\)\(4n-3=-2\)
\(\Leftrightarrow\)\(4n=1\)
\(\Leftrightarrow\)\(\frac{1}{4}\)
\(\Rightarrow\)\(4n-3=-3\)
\(\Leftrightarrow\)\(4n=0\)
\(\Leftrightarrow\)\(n=0\)
Suy ra :
\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)
Vậy \(A_{min}=0\) khi \(n=0\)
Chúc bạn học tốt ~
A=\(\frac{2n+7}{n+3}\)
\(\Rightarrow\)2n+7\(⋮\)n+3
\(\Rightarrow\)2(n+3)+1\(⋮\)n+3
\(\Rightarrow\)1\(⋮\)n+3\(\Rightarrow\)n+3\(\in\)Ư(1)={1;-1}
\(\Rightarrow\)n\(\in\){-2;-4}
\(\frac{2n+7}{n+3}=2+\frac{1}{n+3}\)
Để \(2+\frac{1}{n+3}\) là số nguyên <=> \(\frac{1}{n+3}\) là số nguyên
=> n + 3 thuộc ước của 1 => Ư(1) = { - 1; 1 }
Ta có : n + 3 = 1 => n = - 2 (TM)
n + 3 = - 1 => n = - 4 (TM)
Vậy n = { - 4; - 2 }
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
1,
\(A=\frac{\sqrt{x-3}}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2\)
Suy ra x là số chính phương lẻ.
Vì x < 30 nên\(x\in\left\{1^2;3^2;5^2\right\}\) hay \(x\in\left\{1;9;25\right\}\)
2,
Khi x là số nguyên thì \(\sqrt{x}\) hoặc là số nguyên (nếu x là số chính phương) hoặc là số vô tỉ (nếu x không phải số chính phương). Để \(B=\frac{5}{\sqrt{x-1}}\) là số nguyên thì \(\sqrt{x}\) không thể là số vô tỉ, do đó \(\sqrt{x}\) là số nguyên và \(\sqrt{x-1}\) phải là ước của 5 tức là √xx - 1 ∈ Ư(5). Để B có nghĩa ta phải có x \(\ge\)0 và x\(\ne\) 1. Ta có bảng sau:
\(\sqrt{x-1}\) | 1 | -1 | 5 | -5 |
\(\sqrt{x}\) | 2 | 0 | 6 | -4(loại) |
\(x\) | 4 | 0 | 36 |
Vậy x\(\in\){4;0;36} (các giá trị này đều thoả mãn điều kiện x \(\ge\) 0 và x\(\ne\) 1).
\(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)
để A là số nguyên thì:
3+\(\frac{21}{n-4}\in Z\Rightarrow n-4\inƯ\left(21\right)=\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
n-4 | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 5 | 3 | 7 | 1 | 11 | -3 | 25 | -17 |
a, De A la phan so thi 2-n # 0 suy ra n # 2
Vay n # 2 thi A la phan so
b, vi n la so nguyen nen suy ra 2-n la so nguyen
suy ra 1 chia het cho 2 - n
suy ra 2-n thuoc uoc cua (1)
suy ra 2 - n thuoc { 1 , -1 }
suy ra n thuoc { 1 , 3 }
Vay n thuoc { 1 , 3 }
* Chu y :
Cac tu ( thuoc , uoc , suy ra , chia het ) khi ban trinh bay thi ban viet ki hieu cho minh nhe