Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng phương trình nghiệm nguyên:
Ta có: 3xy+x-y-6=0
(3xy+x)-y=6
x(3y+1)-1/3(3y+1)=6-1/3
(x-1/3)(3y+1)=17/3
3(x-1/3)(3y+1)=17
(3x-1)(3y+1)=17
Vì x, y thuộc Z nên 17 chia hết cho 3x-1, 3y+1
Nên 3x-1, 3y+1 thuộc Ư(17)={1, -1, 17, -17} nên thay vào ta được tương ứng:( Lưu ý (3x-1)(3y+1)=17 )
x= 0; 2/3.
y= -6; 16/3
( Ta thấy chỉ có x=0; y=-6 thỏa mãn x, y thuộc Z )
Lời giải:
$x+4=3xy+y$
$x+4=y(3x+1)$
$3x+12=y(3x+1)$
$(3x+1)+11=y(3x+1)$
$11=y(3x+1)-(3x+1)=(y-1)(3x+1)$
$\Rightarrow 11\vdots y-1$
$\Rightarrow y-1\in\left\{1; -1; 11; -11\right\}$
$\Rightarrow y\in\left\{2; 0; 12; -10\right\}$
Với $y=2$ thì $3x+1=11\Rightarrow x=\frac{10}{3}$ (loại)
Với $y=0$ thì $3x+1=-11\Rightaarrow x=-4$
Với $y=12$ thì $3x+1=1\Rightarrow x=0$
Với $y=-10$ thì $3x+1=-1\Rightarrow x=\frac{-2}{3}$ (loại)
\(x\) + 4 = 3\(x\)y + y
\(x\) + 4 = y( 3\(x\)+1)
3(\(x+4\)) = 3y( 3\(x\)+1)
3\(x\) + 12 = 3y(3\(x\) + 1)
(3\(x\) + 1) + 11 = 3y(3\(x\)+ 1)
3y(3\(x\) + 1) - (3\(x\) +1 ) = 11
(3\(x\) +1)(3y -1) = 11
Ư(11) = { -11; -1; 1; 11}
Lập bảng ta có:
\(3x+1\) | -11 | -1 | 1 | 11 |
3y-1 | -1 | -11 | 11 | 1 |
\(x\) | -4 | -2/3 | 0 | 10/3 |
y | 0 | -10/3 | 4 | 2/3 |
Vậy cặp số \(x\),y thỏa mãn đề bài là:
(\(x\),y) = ( -4; 0); ( 0; 4)
\(3xy+x+15y-44=0\)
\(3y\left(x+5\right)+\left(x+5\right)-49=0\)
\(\left(x+5\right)\left(3y+1\right)=49\)
Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)
Có \(\left(x+5\right)\left(3y+1\right)=49\)
\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)
b tự lập bảng nhé~
(3x-1).y = -12<=> 3x-1 và y là Ư của -12 ={ \(\mp1;2;3;4;6;12\) }=> ta xét từng trường hợp : ....
x(3y+1)+y=13
3x(3y+1)+3y=39
3x(3y+1)+3y+1=39+1
(3x+1)(3y+1)=40
vì 3x+1 và 3y+1 chi 3 dư 1 nên ta có bảng sau:
3x+1 | 1 | 40 | 4 | 10 |
x | 0 | 39 | 1 | 3 |
3y+1 | 40 | 1 | 10 | 40 |
y | 13 | 0 | 3 | 13 |
Kết luận là ok
\(\Leftrightarrow2x^2+\left(y+1\right)^2+3x\left(y+1\right)+1=0\)
Đặt y+1=a
\(\Rightarrow2x^2+a^2+3ax=-1\)
\(\Leftrightarrow\left(2x+a\right)\left(x+a\right)=-1\)
Tự giải tiếp
\(x\left(1-3y\right)-y=0\Rightarrow x=\frac{y}{1-3y}\)
\(\Rightarrow3x=\frac{3y}{1-3y}=\frac{-\left(1-3y\right)+1}{1-3y}=-1+\frac{1}{1-3y}\)
x nguyên => 3x nguyên => \(\frac{1}{1-3y}\) nguyên hay 1-3y là ước của 1
\(\Rightarrow1-3y=\left\{-1;1\right\}\Rightarrow y=0\Rightarrow x=0\)