K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 12 2021

Đặt \(\sqrt{x^2-5x+5}=t>0\)

\(\Rightarrow log_2\left(t+1\right)+log_3\left(t^2+2\right)-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_2\left(t+1\right)+log_3\left(t^2+2\right)-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+1\right)ln2}+\dfrac{2t}{\left(t^2+2\right)ln3}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất của pt

\(\Rightarrow\sqrt{x^2-5x+5}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

30 tháng 3 2016

Đặt :

\(t=\sqrt{x^2-5x+5}\left(t\ge0\right)\)

Bất phương trình trở thành :

\(\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\le2\)

Xét \(f\left(t\right)=\log_2\left(t+1\right)+\log_3\left(t^2+2\right)\) trên \(\left(0;+\infty\right)\)

Do \(t\ge0\) nên \(\log_2\left(t+1\right)\) và \(\log_3\left(t^2+2\right)\) đều là các hàm số đồng biến, do đó f(t) đồng biến trên  \(\left(0;+\infty\right)\)

Lại có f(1)=2, từ đó suy ra \(t\le1\)
Giải ra được :
\(1\le x\)\(\le\frac{5-\sqrt{5}}{2}\) hoặc \(\frac{5-\sqrt{5}}{2}\le x\) \(\le4\)

a: \(log\left(x-2\right)< 3\)

=>\(\left\{{}\begin{matrix}x-2>0\\log\left(x-2\right)< log9\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2>0\\x-2< 9\end{matrix}\right.\Leftrightarrow2< x< 11\)

b: \(log_2\left(2x-1\right)>3\)

=>\(\left\{{}\begin{matrix}2x-1>0\\log_2\left(2x-1\right)>log_29\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-1>0\\2x-1>9\end{matrix}\right.\Leftrightarrow2x-1>9\)

=>2x>10

=>x>5

c: \(log_3\left(-x-1\right)< =2\)

=>\(\left\{{}\begin{matrix}-x-1>0\\log_3\left(-x-1\right)< =log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-x-1>0\\-x-1< =9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-x>1\\-x< =10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< -1\\x>=-10\end{matrix}\right.\Leftrightarrow-10< =x< -1\)

d: \(log_2\left(2x-3\right)>=2\)

=>\(\left\{{}\begin{matrix}2x-3>0\\log_2\left(2x-3\right)>=log_24\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>=4\end{matrix}\right.\)

=>2x-3>=4

=>2x>=7

=>\(x>=\dfrac{7}{2}\)

e: \(log_3\left(2x-7\right)>2\)

=>\(\left\{{}\begin{matrix}2x-7>0\\log_3\left(2x-7\right)>log_39\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>\dfrac{7}{2}\\2x-7>9\end{matrix}\right.\)

=>2x-7>9

=>2x>16

=>x>8

NV
20 tháng 1 2024

a.

\(log\left(x-2\right)< 3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\x-2< 10^3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\x< 1002\end{matrix}\right.\) \(\Rightarrow2< x< 1002\)

b.

\(log_2\left(2x-1\right)>3\Leftrightarrow\left\{{}\begin{matrix}2x-1>0\\2x-1>2^3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{2}\\x>\dfrac{9}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{9}{2}\)

c.

\(log_3\left(-x-1\right)\le2\Rightarrow\left\{{}\begin{matrix}-x-1>0\\-x-1\le3^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x\ge-10\end{matrix}\right.\) \(\Rightarrow-10\le x< -1\)

d.

\(log_2\left(2x-3\right)\ge2\Leftrightarrow\left\{{}\begin{matrix}2x-3>0\\2x-3\ge2^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\x>\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{7}{2}\)

e,

\(log_3\left(2x-7\right)>2\Leftrightarrow\left\{{}\begin{matrix}2x-7>0\\2x-7>3^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{7}{2}\\x>8\end{matrix}\right.\) \(\Rightarrow x>8\)

NV
13 tháng 1 2024

ĐKXĐ:

a.

\(x^2-16>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -4\end{matrix}\right.\)

b.

\(x^2-2x+1>0\Rightarrow\left(x-1\right)^2>0\Rightarrow x\ne1\)

c.

\(\left(2-x\right)\left(x+1\right)>0\Rightarrow-1< x< 2\)

d.

\(\left(x^2-1\right)\left(x+5\right)>0\Rightarrow\left[{}\begin{matrix}-5< x< -1\\x>1\end{matrix}\right.\)

NV
11 tháng 12 2021

Đặt \(\sqrt{x^2-3x+2}=t\ge0\)

\(\Rightarrow log_3\left(t+2\right)+5^{t^2-1}-2=0\)

Nhận thấy \(t=1\) là 1 nghiệm của pt

Xét hàm \(f\left(t\right)=log_3\left(t+2\right)+5^{t^2-1}-2\)

\(f'\left(t\right)=\dfrac{1}{\left(t+2\right)ln3}+2t.5^{t^2-1}.ln5>0\) ; \(\forall t\ge0\)

\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t\right)\) có tối đa 1 nghiệm

\(\Rightarrow t=1\) là nghiệm duy nhất

\(\Rightarrow\sqrt{x^2-3x+2}=1\)

\(\Rightarrow...\)

a: ĐKXĐ: 2x+6>0

=>2x>-6

=>x>-2

b: ĐKXĐ: x-6>0

=>x>6

c: ĐKXĐ: \(\left\{{}\begin{matrix}\dfrac{1}{2-x}>0\\2-x\ne0\end{matrix}\right.\)

=>2-x>0

=>x<2

d: ĐKXĐ: \(\left(x-6\right)\left(x+2\right)>0\)

=>\(\left[{}\begin{matrix}x-6>0\\x+2< 0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x>6\\x< -2\end{matrix}\right.\)

4 tháng 10 2015

đk: \(\begin{cases}x^2-5x+6\ge0\\x-1\ge0\end{cases}\)\(\Rightarrow\begin{cases}x\ge3;x\le2\\x\ge1\end{cases}\) suy ra \(x\ge3;1\le x\le2\)

ta có \(\log_3^{\left(x^2-5x+6\right)}=\log_{\sqrt{3}}^{\frac{x-1}{2}}+\log_{\sqrt{3}}^{x-3}\Rightarrow\log_3^{\left(x^2-5x+6\right)}=\log_{\sqrt{3}}^{\left(x-3\right)\frac{x-1}{2}}\) suy ra \(2\sqrt{x^2-5x+6}=\left(x-3\right)\left(x-1\right)\)

giải pt ta tìm đc x và đối chiếu với đk đề bài ta tìm đc x

25 tháng 9 2019

làm gì lấy được dấu bằng chỗ điều kiện bạn ơi :>

a: \(log\left(x-5\right)< 2\)

=>\(\left\{{}\begin{matrix}x-5>0\\log\left(x-5\right)< log4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-5>0\\x-5< 4\end{matrix}\right.\Leftrightarrow5< x< 9\)

b: \(log_2\left(2x-3\right)>4\)

=>\(log_2\left(2x-3\right)>log_216\)

=>\(\left\{{}\begin{matrix}2x-3>0\\2x-3>16\end{matrix}\right.\)

=>2x-3>16

=>2x>19

=>\(x>\dfrac{19}{2}\)

c: \(log_3\left(2x+5\right)< =3\)

=>\(log_3\left(2x+5\right)< =log_327\)

=>\(\left\{{}\begin{matrix}2x+5>0\\2x+5< =27\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>-\dfrac{5}{2}\\x< =11\end{matrix}\right.\)

=>\(-\dfrac{5}{2}< x< =11\)

d: \(log_4\left(4x-5\right)>=2\)

=>\(log_4\left(4x-5\right)>=log_416\)

=>4x-5>=16 và 4x-5>0

=>4x>=21 và 4x>5

=>4x>=21

=>\(x>=\dfrac{21}{4}\)

e: \(log_3\left(1-3x\right)>3\)

=>\(log_3\left(1-3x\right)>log_327\)

=>\(\left\{{}\begin{matrix}1-3x>0\\1-3x>27\end{matrix}\right.\)

=>1-3x>27

=>\(-3x>26\)

=>\(x< -\dfrac{26}{3}\)