\(\log_2\left(\sqrt{2x^2+1}+1\right)+\left|x\right|=\log_2\left(\sqrt{2x^2+1}-1\right)+\sqr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2016

Điều kiện x>1

Từ (1) ta có  \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3

Đặt \(t=\log_2\left(x^2-2x+5\right)\)

Tìm điều kiện của t :

- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)

- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)

Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3

- Ta có \(x^2-2x+5=2'\)

 \(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)

Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)

Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)

Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)

- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)

- Bảng biến thiên :

x2                                              \(\frac{5}{2}\)                                                    3
y'                  +                             0                       -
y

-6                                                                                                      -6

                                                -\(\frac{25}{4}\)

 

24 tháng 3 2016

Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6

NV
1 tháng 3 2020

ĐKXĐ: \(-1< x< 2\)

Khi đó:

\(\Leftrightarrow log_2\left(2-x\right)\left(2x+2\right)-2log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le0\)

\(\Leftrightarrow log_2\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le0\)

\(\Rightarrow\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le1\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}\le m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\)

\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}-4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\le m\)

Đặt \(\sqrt{2-x}+\sqrt{2x+2}=t\Rightarrow\sqrt{3}\le t\le3\)

\(t^2=x+4+2\sqrt{\left(2-x\right)\left(2x+2\right)}\Rightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}=\frac{t^2}{2}-2\)

\(\Rightarrow\frac{t^2}{2}-4t-2\le m\)

Xét hàm \(f\left(t\right)=\frac{t^2}{2}-4t-2\) trên \(\left[\sqrt{3};3\right]\)

\(\Rightarrow f\left(t\right)_{min}=f\left(3\right)=-\frac{19}{2}\Rightarrow m_{min}=-\frac{19}{2}\)

7 tháng 4 2016

Điều kiện \(x>\frac{1}{2},x\ne3\).

Với điều kiện đó, phương trình tương đương với :

                \(4\log_2\left|x-3\right|-4\log_2\left(2x-1\right)=4\)

                \(\Leftrightarrow\log_2\frac{\left|x-3\right|}{2x-1}=1\)

                \(\Leftrightarrow\frac{\left|x-3\right|}{2x-1}=2\Leftrightarrow\left|x-3\right|=4x-2\)

                \(\Leftrightarrow\begin{cases}x-3=4x-2\\x-3=-4x+2\end{cases}\)

                \(\Leftrightarrow x=1\)

Vậy phương trình có nghiệm \(x=1\)

28 tháng 3 2016

d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1

Phương trình đã cho tương đương với :

\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)

\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)

Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :

\(t^2-4t-5=0\) hay t=-1 V t=5

Do \(t\ge0\) nên t=5

\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn

Vậy \(x=\pm2^{50}\) là nghiệm của phương trình

28 tháng 3 2016

c) Điều kiện x>0. Phương trình đã cho tương đương với :

\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)

\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)

\(\Leftrightarrow8lg^2x-6lgx-5=0\)

Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành

\(8t^2-6t-5=0\)  hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)

Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)

Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)

Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)