Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x^2+4x-5>0\\x+7>0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-7< x< -5\\x>1\end{matrix}\right.\)
Khi đó BPT tương đương:
\(log_2\left(x^2+4x-5\right)>2log_{2^{-1}}\left(\frac{1}{x+7}\right)\)
\(\Leftrightarrow log_2\left(x^2+4x-5\right)>log_2\left(x+7\right)^2\)
\(\Leftrightarrow x^2+4x-5>x^2+14x+49\)
\(\Leftrightarrow10x< -54\Rightarrow x< -\frac{27}{5}\)
Kết hợp ĐKXĐ \(\Rightarrow-\frac{27}{5}< x< -5\Rightarrow a=-\frac{27}{5};b=-5\)
\(\Rightarrow...\)
ĐKXĐ: \(-1< x< 2\)
Khi đó:
\(\Leftrightarrow log_2\left(2-x\right)\left(2x+2\right)-2log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le0\)
\(\Leftrightarrow log_2\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le0\)
\(\Rightarrow\frac{\sqrt{\left(2-x\right)\left(2x+2\right)}}{m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)}\le1\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}\le m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\)
\(\Leftrightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}-4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\le m\)
Đặt \(\sqrt{2-x}+\sqrt{2x+2}=t\Rightarrow\sqrt{3}\le t\le3\)
\(t^2=x+4+2\sqrt{\left(2-x\right)\left(2x+2\right)}\Rightarrow\sqrt{\left(2-x\right)\left(2x+2\right)}+\frac{x}{2}=\frac{t^2}{2}-2\)
\(\Rightarrow\frac{t^2}{2}-4t-2\le m\)
Xét hàm \(f\left(t\right)=\frac{t^2}{2}-4t-2\) trên \(\left[\sqrt{3};3\right]\)
\(\Rightarrow f\left(t\right)_{min}=f\left(3\right)=-\frac{19}{2}\Rightarrow m_{min}=-\frac{19}{2}\)
ĐKXĐ: \(-x^2+4x+m>0\)
\(log_2\left(-x^2+4x+m\right)-log_2\left(x^2+2\right)< log_23\)
\(\Leftrightarrow log_2\left(\dfrac{-x^2+4x+m}{x^2+2}\right)< log_23\)
\(\Leftrightarrow\dfrac{-x^2+4x+m}{x^2+2}< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x^2+4x+m>0\\-x^2+4x+m< 3x^2+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>x^2-4x\\m< 4x^2-4x+6\end{matrix}\right.\) ; \(\forall x\in\left[1;5\right]\)
Xét hai hàm \(\left\{{}\begin{matrix}f\left(x\right)=x^2-4x\\g\left(x\right)=4x^2-4x+6\end{matrix}\right.\) trên \(\left[1;5\right]\) ta được: \(\left\{{}\begin{matrix}f\left(x\right)_{max}=f\left(5\right)=5\\g\left(x\right)_{min}=g\left(1\right)=6\end{matrix}\right.\)
\(\Rightarrow5\le m\le6\)
Có 2 giá trị nguyên của m
14.
\(log_aa^2b^4=log_aa^2+log_ab^4=2+4log_ab=2+4p\)
15.
\(\frac{1}{2}log_ab+\frac{1}{2}log_ba=1\)
\(\Leftrightarrow log_ab+\frac{1}{log_ab}=2\)
\(\Leftrightarrow log_a^2b-2log_ab+1=0\)
\(\Leftrightarrow\left(log_ab-1\right)^2=0\)
\(\Rightarrow log_ab=1\Rightarrow a=b\)
16.
\(2^a=3\Rightarrow log_32^a=1\Rightarrow log_32=\frac{1}{a}\)
\(log_3\sqrt[3]{16}=log_32^{\frac{4}{3}}=\frac{4}{3}log_32=\frac{4}{3a}\)
11.
\(\Leftrightarrow1>\left(2+\sqrt{3}\right)^x\left(2+\sqrt{3}\right)^{x+2}\)
\(\Leftrightarrow\left(2+\sqrt{3}\right)^{2x+2}< 1\)
\(\Leftrightarrow2x+2< 0\Rightarrow x< -1\)
\(\Rightarrow\) có \(-2+2020+1=2019\) nghiệm
12.
\(\Leftrightarrow\left\{{}\begin{matrix}x-2>0\\0< log_3\left(x-2\right)< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>2\\1< x-2< 3\end{matrix}\right.\)
\(\Rightarrow3< x< 5\Rightarrow b-a=2\)
13.
\(4^x=t>0\Rightarrow t^2-5t+4\ge0\)
\(\Rightarrow\left[{}\begin{matrix}t\le1\\t\ge4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4^x\le1\\4^x\ge4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le0\\x\ge1\end{matrix}\right.\)
\(log_7\left(4x^2-4x+1\right)-log_72x+4x^2+1=6x\)
\(\Leftrightarrow log_7\left(4x^2-4x+1\right)+4x^2-4x+1=log_72x+2x\)
\(\Rightarrow4x^2-4x+1=2x\)
\(\Rightarrow...\)
log7(4x2−4x+1)−log72x+4x2+1=6xlog7(4x2−4x+1)−log72x+4x2+1=6x
=log7(4x2−4x+1)+4x2−4x+1=log72x+2x⇔log7(4x2−4x+1)+4x2−4x+1=log72x+2x
=4x2−4x+1=2x⇒4x2−4x+1=2x
= 2x
Điều kiện x>1
Từ (1) ta có \(\log_{\sqrt{3}}\frac{x+1}{x-1}>\log_34\) \(\Leftrightarrow\frac{x+1}{x-1}>2\) \(\Leftrightarrow\) 1<x<3
Đặt \(t=\log_2\left(x^2-2x+5\right)\)
Tìm điều kiện của t :
- Xét hàm số \(f\left(x\right)=\log_2\left(x^2-2x+5\right)\) với mọi x thuộc (1;3)
- Đạo hàm : \(f\left(x\right)=\frac{2x-2}{\ln2\left(x^2-2x+5\right)}>\) mọi \(x\in\left(1,3\right)\)
Hàm số đồng biến nên ta có \(f\left(1\right)\) <\(f\left(x\right)\) <\(f\left(3\right)\) \(\Leftrightarrow\)2<2<3
- Ta có \(x^2-2x+5=2'\)
\(\Leftrightarrow\) \(\left(x-1\right)^2=2'-4\)
Suy ra ứng với mõi giá trị \(t\in\left(2,3\right)\) ta luôn có 1 giá trị \(x\in\left(1,3\right)\)
Lúc đó (2) suy ra : \(t-\frac{m}{t}=5\Leftrightarrow t^2-5t=m\)
Xét hàm số : \(f\left(t\right)=t^2-5t\) với mọi \(t\in\left(2,3\right)\)
- Đạo hàm : \(f'\left(t\right)=2t-5=0\Leftrightarrow t=\frac{5}{2}\)
- Bảng biến thiên :
x | 2 \(\frac{5}{2}\) 3 |
y' | + 0 - |
y | -6 -6 -\(\frac{25}{4}\) |
Để hệ có 2 cặp nghiệm phân biệt \(\Leftrightarrow-6>-m>-\frac{25}{4}\)\(\Leftrightarrow\)\(\frac{25}{4}\) <m<6
a:
ĐKXĐ: x+1>0 và x>0
=>x>0
=>\(log_2\left(x^2+x\right)=1\)
=>x^2+x=2
=>x^2+x-2=0
=>(x+2)(x-1)=0
=>x=1(nhận) hoặc x=-2(loại)
c: ĐKXĐ: x-1>0 và x-2>0
=>x>2
\(PT\Leftrightarrow log_2\left(x^2-3x+2\right)=3\)
=>\(\Leftrightarrow x^2-3x+2=8\)
=>x^2-3x-6=0
=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{2}\left(nhận\right)\\x=\dfrac{3-\sqrt{33}}{2}\left(loại\right)\end{matrix}\right.\)
a. Vì \(0< 0,1< 1\) nên bất phương trình đã cho
\(\Leftrightarrow0< x^2+x-2< x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+x-2>0\\x^2-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< -2\\x>1\end{matrix}\right.\\-\sqrt{5}< x< \sqrt{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\sqrt{5}< x< -2\\1< x< \sqrt{5}\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là \(S=\left\{-\sqrt{5};-2\right\}\) và \(\left\{1;\sqrt{5}\right\}\)
b. Điều kiện \(\left\{{}\begin{matrix}2-x>0\\x^2-6x+5>0\end{matrix}\right.\)
Ta có:
\(log_{\dfrac{1}{3}}\left(x^2-6x+5\right)+2log^3\left(2-x\right)\ge0\)
\(\Leftrightarrow log_{\dfrac{1}{3}}\left(x^2-6x+5\right)\ge log_{\dfrac{1}{3}}\left(2-x\right)^2\)
\(\Leftrightarrow x^2-6x+5\le\left(2-x\right)^2\)
\(\Leftrightarrow2x-1\ge0\)
Bất phương trình tương đương với:
\(\left\{{}\begin{matrix}x^2-6x+5>0\\2-x>0\\2x-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x< 1\\x>5\end{matrix}\right.\\x< 2\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{2}\le x< 1\)
Vậy tập nghiệm của bất phương trình là: \(\left(\dfrac{1}{2};1\right)\)
\(ĐKXĐ:x>2\)
BPT đã cho tương đương với:
\(2log_2\sqrt{x+1}+log_2\left(x-2\right)\le2\)
\(\Leftrightarrow log_2\left(x+1\right)+log_2\left(x-2\right)\le2\)
\(\Leftrightarrow log_2\left(x^2-x-2\right)\le2\)\(\Leftrightarrow0< x^2-x-2\le2^2\)\(\Leftrightarrow\left[{}\begin{matrix}2< x\le3\\-2\le x< -1\left(l\right)\end{matrix}\right.\)
Vậy tổng các nghiệm nguyên của bpt là 3