Tìm x, y nguyên
( x + 2)2 x ( y -1) = -9
Giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow9x\left(x+2\right)+9y\left(y-\dfrac{2}{3}\right)=10\\ \Leftrightarrow9x^2+18x+9y^2-6y-10=0\\ \Leftrightarrow\left(9x^2+18x+9\right)+\left(9y^2-6y+1\right)=0\\ \Leftrightarrow9\left(x+1\right)^2+\left(3y-1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(-\dfrac{2}{3}=\dfrac{x}{-6}\Rightarrow x=\left(-\dfrac{2}{3}\right)\left(-6\right)=4\)
\(-\dfrac{2}{3}=\dfrac{10}{-y}\Rightarrow y=\left(-10\right):\left(-\dfrac{2}{3}\right)=15\)
\(-\dfrac{2}{3}=\dfrac{z}{9}\Rightarrow z=\left(-\dfrac{2}{3}\right).9=-6\)
\(\dfrac{-2}{3}=\dfrac{x}{-6}=\dfrac{10}{-y}=\dfrac{z}{9}\)
\(x=\left(-6.-2\right):3=4;y=\left(-6.10\right):-4=15;z=\left(10.9\right):-15=-6\)
\(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow x^2-xy+y+2=0\)
\(\Leftrightarrow x\left(x-1\right)-y\left(x-1\right)+\left(x-1\right)+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-y+1\right)=-3\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=-1\\x-y+1=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\x-y+1=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=1\\x-y+1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\x-y+1=1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=-2\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;-2\right),\left(4;6\right),\left(2;6\right),\left(-2;-2\right)\right\}\)
Ta có \(y\left(x-1\right)=x^2+2\)
\(\Leftrightarrow y\left(x-1\right)-x^2=2\)
\(\Leftrightarrow y\left(x-1\right)-x^2+1=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x^2-1\right)=3\)
\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\)
Vì x,y nguyên nên ta có bảng
x-1 | 3 | 1 | -1 | -3 |
y-x-1 | 1 | 3 | -3 | -1 |
x | 4 | 2 | 0 | -2 |
y | 6 | 8 | 2 | 4 |
Vậy\(\left(x,y\right)=\left\{\left(4,6\right),\left(2,8\right),\left(0,2\right),\left(-2,4\right)\right\}\)thỏa mãn
\(xy\) + \(x\) - y = 2
(\(xy\) + \(x\)) - (y + 1) = 2 - 1
\(x\).(y + 1) - (y + 1) = 1
(y + 1).(\(x\) - 1) = 1
Ư(1) = {- 1; 1}
Lập bảng ta có:
\(x\) - 1 | -1 | 1 |
\(x\) | 0 | 2 |
y + 1 | - 1 | 1 |
y | -2 | 0 |
Theo bảng trên ta có:
Các cặp \(x\) ; y thỏa mãn đề bài lần lượt là:
(\(x\); y) = (0; -2); (2; 0)
a: x/2=-5/y
=>xy=-10
=>\(\left(x,y\right)\in\left\{\left(1;-10\right);\left(-10;1\right);\left(-1;10\right);\left(10;-1\right);\left(2;-5\right);\left(-5;2\right);\left(-2;5\right);\left(5;-2\right)\right\}\)
b: =>xy=12
mà x>y>0
nên \(\left(x,y\right)\in\left\{\left(12;1\right);\left(6;2\right);\left(4;3\right)\right\}\)
c: =>(x-1)(y+1)=3
=>\(\left(x-1;y+1\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(2;2\right);\left(4;0\right);\left(0;-4\right);\left(-2;-2\right)\right\}\)
d: =>y(x+2)=5
=>\(\left(x+2;y\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-1;5\right);\left(3;1\right);\left(-3;-5\right);\left(-7;-1\right)\right\}\)
a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).
Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)
b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)
=>
x | 1 | 5 | -1 | -5 |
y+1 | 5 | 1 | -5 | -1 |
y | 4 | 0 | -6 | -2 |
Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).
c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)
=>
x-2 | 1 | 7 | -1 | -7 |
y+3 | 7 | 1 | -7 | -1 |
x | 3 | 9 | 1 | -5 |
y | 4 | -2 | -10 | -4 |
Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).
Do x, y nguyên => \(\left\{{}\begin{matrix}\left(x+2\right)^2nguyên\ge0\\y-1nguyên\end{matrix}\right.\)
(x+2)2 . (y-1) = -9
Ta có bảng:
Em mới học lớp 6 thôi ạ