cho tam giác ABC. Gợi M là trung điểm của BC.Chứng minh rằng AM<AB+AC/2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A
xet tam giac bma va tam giac cma co;am chung,ab=ac,mb=mc nen tam giac bma=tam gjaccma[c.c.c].vi tam giac bma=tam giac cma nengoc bma bang goc cma nenam la phan giac cua gocbac
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}\)
Có M là trung điểm BC và AM = 1/2 BC (đề bài)
=> AM là đường trung tuyến ứng với cạnh huyền
Mà cái này chỉ có trong tam giác vuông
=> ABC là tam giác vuông tại A
Vì M là trung điểm của BC=>AM là đường trung tuyến (1)
Mà AM =1/2BC(2)
Từ (1) và (2) =>tam giác ABC vuông tại A (ĐPCM)
Xét tam giác ABC có AB = AC
=> tam giác ABC cân tại A
=> góc ABC = góc ACB
Xét tam giác ABM và tam giác ACM có
AB = AC (gt)
góc ABC = góc ACB (cmt)
MB = MC (gt)
Vậy tam giác ABM = tam giác ACM (c.g.c)
=> góc AMB = góc AMC (2 góc tương ứng)
mà góc AMB + góc AMC = 180 độ (kề bù)
nên góc AMB = AMC = 180 độ/2 = 90 độ
=> AM | BC
a)xét tam giác AMB và tam giác AMC
AB=AC ( giả thiết )
AM cạnh chung
BM = CM (M là trung điểm cạnh BC)
Vậy tam giác AMB = tam giác AMC
a. Chứng minh tam giác AMB = tam giác AMC :
AM là cạnh chung
AB = AC ( giả thiết )
BM = MC ( vì M là trung điểm của tam giác ABC )
Xuy ra : tam giác AMB = tam giác AMC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao