Tìm 2 số, biết rằng bội chung nhỏ nhất cộng ước chung lớn nhất của chúng bằng 19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi phân tích kĩ:
bội chung nhỏ nhất nhân ước chung lớn nhất bằng tích 2 số.
a.b=19.
Tìm các ước dễ vì 19 là số nguyên tố mà.
a và b là...
Chúc học giỏi,cách làm tương tự
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:: \(12a<12b\le\frac{96}{2}=48\)
=> a<b < 4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:12a<12b\(\le\frac{96}{2}\)=48
=> a<b<4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
Gọi các số phải tìm là a và b, giả sử a nhỏ hơn hoặc bằng b. Ta có (a, b) = 10 nên a = 10.a', b = 10.b', (a', b') = 1, a' nhỏ hơn hoăc bằng b'. Do đó a. b = 100.a'.b' (1). Mặt khác ab = [a, b]. (a, b) = 900. 10 = 9000 (2).
Từ (1) và (2) suy ra a'. b' = 90. Ta có các trường hợp sau :bạn tự suy ra nhé
hok tốt
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
Gọi 2 số cần tìm là a và b (a,b là 2 số tự nhiên khác 0 và có chữ số hàng đơn vị khác nhau)
Ta có : (a,b)=12 và [a,b]=72
\(\Rightarrow\)ab=(a,b).[a,b]=12.72=864
Vì (a,b)=12 nên ta có : \(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\)
Mà ab=864 nên ta có :
12m.12n=864
\(\Rightarrow\)144m.n=864
\(\Rightarrow\)mn=6
Vì (m,n)=1 và a,b có chữ số hàng đơn vị khác nhau nên ta có bảng sau :
m 2 3
n 3 2
a 24 36
b 36 24
Vậy (a;b)\(\in\){(24;36);(36;24)}
axb =ưclnxbcnn
12 x 72=864=axb
giả sử a>b
ưcln {ab} =a=kx12 b=qx12
k>q kq=1
axb =864
kx12xqx12=864
144xkq=864
kq =864 : 144=6
k=6 k=3
q=1 q=2
a=72 a=36
b=12 b=24
ƯCLN ( a,b ) = d \(\Leftrightarrow\hept{\begin{cases}a=da'\\b=db'\\\left(a',b'\right)=1\end{cases}}\)
BCNN ( a,b ) = \(\frac{a.b}{ƯCLN\left(a,b\right)}=\frac{da'.db'}{d}=da'b'\)
BCNN ( a,b ) + ƯCLN ( a,b ) = 19
d . ( a'b' + 1 ) = 19
Do đó : a'b' + 1 là ước của 19 và a'b' + 1 \(\ge\)2
Giả sử a \(\ge\)b thì a' \(\ge\)b' . Ta được :
Vậy hai số là 18 và 1; 9 và 2