K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó:ΔACB vuông tại C

=>\(\widehat{ACB}=90^0\)

Ta có: ΔOAC cân tại O(OA=OC)

mà OH là đường trung tuyến

nên OH\(\perp\)AC và OH là tia phân giác của góc AOC

Ta có: OH\(\perp\)AC(cmt)

AC\(\perp\)CB tại C(Do ΔACB vuông tại C)

Do đó: OH//BC

b:

OH là phân giác của góc AOC

=>\(\widehat{AOH}=\widehat{COH}\)

mà M\(\in\)OH

nên \(\widehat{AOM}=\widehat{COM}\)

Xét ΔOCM và ΔOAM có

OC=OA

\(\widehat{COM}=\widehat{AOM}\)

OM chung

Do đó: ΔOCM=ΔOAM

=>\(\widehat{OCM}=\widehat{OAM}\)

mà \(\widehat{OCM}=90^0\)

nên \(\widehat{OAM}=90^0\)

=>OA\(\perp\)MA tại A

=>MA là tiếp tuyến tại A của (O)

a: Xét (O) có

ΔBCD nội tiếp

BD là đường kính

=>ΔBCD vuông tại C

=>CD//OA

b: ΔOBC cân tại O

mà OA là đường cao

nên OA là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

góc BOA=góc COA

OA chung

=>ΔOBA=ΔOCA

=>góc OCA=90 độ

=>AC là tiêp tuyến của (O)