Cho O là một điểm nằm trong △ABC. Trên OA lấy điểm D sao cho OD=13OA. Qua D vẽ đường thẳng song song với AB cắt OB tại E. Qua E vẽ đường thẳng song song với BC cắt OC tại F.Chứng minh: △DEF∼△ABC và xác định tỉ số đồng dạng.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
27 tháng 3 2023
DE//AB
=>OD/OA=OE/OB=DE/AB=1/3
EF//BC
=>EF/BC=OF/OC=OE/OB=1/3=OD/OA
OF/OC=OD/OA
=>DF//AC
=>DF/AC=OD/OA=1/3
Xet ΔDEF và ΔABC có
DE/AB=EF/BC=DF/AC
=>ΔDEF đồng dạng với ΔABC
=>k=ED/AB=1/3
15 tháng 2 2020
Theo Thales có
DE//AB\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}\left(1\right)\)
Lại có EF//BC\(\Rightarrow\frac{OE}{OB}=\frac{OF}{OC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{OD}{OA}=\frac{OF}{OC}\Rightarrow\) DF//AC(thales)
KT
25 tháng 2 2017
bạn ơi, cái chỗ qua E kẻ đường thẳng song song với OC tại F là sao vậy bạn.