Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBDF và ΔEFD có
\(\widehat{BDF}=\widehat{EFD}\)
DF chung
\(\widehat{BFD}=\widehat{EDF}\)
Do đó: ΔBDF=ΔEFD
Suy ra: BD=EF
mà BD=AD
nen EF=AD
b: Xét ΔADE và ΔEFC có
\(\widehat{A}=\widehat{FEC}\)
AD=EF
\(\widehat{ADE}=\widehat{EFC}\)
Do đó: ΔADE=ΔEFC
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//AB
Do đó: F là trung điểm của BC
a. Nối DD và FF
Xét ΔBDFΔBDF và ΔDEFΔDEF , ta có :
DF=DFDF=DF ( cạnh chung )
ˆBDF=ˆDEFBDF^=DEF^ ( vì AB//EFAB//EF )
ˆDFB=ˆFDEDFB^=FDE^ ( vì DE//BCDE//BC )
⇒ΔBDF=ΔFDE(g.c.g)⇒ΔBDF=ΔFDE(g.c.g)
⇒DB=EF⇒DB=EF ( hai cạnh tương ứng )
Mà AD=DB⇒AD=EFAD=DB⇒AD=EF
b. Xét ΔADEΔADE và ΔEFCΔEFC , ta có :
ˆA=ˆFECA^=FEC^ ( vì AB//EFAB//EF )
AD=EFAD=EF ( theo câu a )
ˆADE=ˆEFC(=ˆB)ADE^=EFC^(=B^)
⇒ΔADE=ΔEFC(g.c.g)