Giúp mk vs ạ
13.5(2x+5)^2=-232
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\ge\dfrac{5}{2}\)có: \(A=x+\sqrt{2x-5}\ge\dfrac{5}{2}+0=\dfrac{5}{2}\)
Dấu '=' xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)
\(\Rightarrow A_{min}=\dfrac{5}{2}\)
\(2x^2+y^2+2x-2xy+5-4y=0\)
\(\Leftrightarrow\left[y^2-2y\left(x+2\right)+\left(x+2\right)^2\right]+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(y-x-2\right)^2+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y-x-2=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
\(S=\left(x+2\right)^2+\left(y-1\right)^2=\left(1+2\right)^2+\left(3-1\right)^2\)
\(=3^2+2^2=13\)
để mk làm cho ; bài này dùng liên hợp
pt<=> \(x+1-\sqrt{x^2-2x+5}+2x+4-2\sqrt{4x+5}+x^3-2x^2+2x-1=0\) ( ĐKXĐ: \(x\ge-\frac{5}{4}\))
<=> \(\frac{x^2+2x+1-\left(x^2-2x+5\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{\left(2x+4\right)^2-4\left(4x+5\right)}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=>: \(\frac{x^2+2x+1-x^2+2x-5}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2+16x+16-16x-20}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\frac{4x-4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x^2-4}{2x+4+2\sqrt{4x+5}}+\left(x-1\right)\left(x^2-x+1\right)=0\)
<=> \(\left(x-1\right)\left(\frac{4}{x+1+\sqrt{x^2-2x+5}}+\frac{4x+4}{2x+4+2\sqrt{4x+5}}+x^2-x+1\right)=0\)
<=> x=1 ( vì \(x\ge-\frac{5}{4}\)nên cái trong ngoặc thứ 2 khác 0)
vậy x=1
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
Bằng 0 chứ nhỉ em ?
(x-5) . (2x-4)= 0
\(\left[{}\begin{matrix}x-5=0\\2x-4=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\2x=4\end{matrix}\right.< =>\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
(x-5) . (2x-4)= 5
<=> 2x^2 - 4x - 10x + 20 = 5
<=> 2x^2 - 14x + 15 = 0
Giải pt bâc hai ra đc : \(x=\dfrac{7+\sqrt{19}}{2}\)và \(x2=\dfrac{7-\sqrt{19}}{2}\)
\(x^2-25=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(2x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\-x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-4\end{cases}}\)
Vậy tập ngiệm của phương trình S = {-5;-4}
\(\dfrac{-4}{x}=\dfrac{x}{-49}\\ \Rightarrow x^2=\left(-4\right)\left(-49\right)\\ \Rightarrow x^2=196\\ \Rightarrow x=\pm14\)
\(\dfrac{3.6}{x-3}=\dfrac{5}{3}\\ \Rightarrow5\left(x-3\right)=3.3.6\\ \Rightarrow5\left(x-3\right)=54\\ \Rightarrow x-3=\dfrac{54}{5}\\ \Rightarrow x=\dfrac{54}{5}+3\\ \Rightarrow x=\dfrac{69}{15}\)
\(\left(2x+1\right):2=12:3\\ \left(2x+1\right):2=4\\2x+1=2\\ 2x=1\\ x=\dfrac{1}{2} \)
\(\left(2x-14\right):3=12:9\\ \left(2x-14\right):3=\dfrac{4}{3}\\ 2x-14=4\\ 2x=16\\ x=8\)