Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3x-6}{x+4}=\frac{2\left(x+5\right)+\left(x-3\right)}{x-2}\)
\(\frac{3\left(x-2\right)}{x+4}=\frac{2\left(x+5\right)+x-3}{x-2}\)
\(\frac{3\left(x-4\right)}{x+4}=\frac{3x+7}{x-2}\)
\(3\left(x-2\right)\left(x-2\right)=\left(3x+7\right)\left(x+4\right)\)
\(3\left(x-2\right)^2=\left(3x+7\right)\left(x+4\right)\)
\(3x^2-12x+12=3x^2+12x+7x+28\)
\(3x^2-12x+12=3x^2+19x+28\)
\(-12x+12=19x+28\)
\(12=19x+28+12x\)
\(19x+28+12x=12\) (chuyển vế)
\(31x+28=12\)
\(31x=12-28\)
\(31x=-16\)
\(x=-\frac{16}{31}\)
\(\Rightarrow x=-\frac{16}{31}\)
a) \(x^2-3x-5=x\left(x-3\right)-5\)
Để \(^2-3x-5\)chia hết cho x-3 thì x(x-3) -5 phải chia hết cho x-3
mà x(x-3) chia hết cho x-3 => -5 phải chia hết cho x-3
=> x-3\(\inƯ\left(-5\right)=\left\{-1;-5;1;5\right\}\)
Lập bảng giải tiếp
\(5x+2=5\left(x+1\right)-3\)
Để 5x+2 chia hết cho x+1 thì 5(x+1)-3 phải chia hết cho x+1
mà 5(x+1) chia hết cho x+1
=> -3 phải chia hết cho x+1
=> x+1\(\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Lập bảng giải tiếp nhé! :3
\(\frac{2x+4}{-10}=\frac{2}{5}\)
\(\frac{2x+4}{-10}=\frac{-4}{-10}\)
\(\Leftrightarrow2x+4=-4\Leftrightarrow2x=-8\Leftrightarrow x=-4\)
Cách khác :
\(\frac{2x+4}{-10}=\frac{2}{5}\)
\(\Leftrightarrow5\left(2x+4\right)=-20\)
\(\Leftrightarrow10x+20=-20\Leftrightarrow10x=-40\Leftrightarrow x=-4\)
Lớp 6 :\(\frac{2x+4}{-10}=\frac{2}{5}\)
\(\Rightarrow\frac{\left(2x+4\right):\left(-2\right)}{\left(-10\right):\left(-2\right)}=\frac{2}{5}\)
\(\Rightarrow\left(2x+4\right):\left(-2\right)=2\)
\(\Rightarrow2x+4=-4\)
\(\Rightarrow2x=-8\)
\(\Rightarrow x=-4\)
Lớp 7 : \(\frac{2x+4}{-10}=\frac{2}{5}\)
\(\Rightarrow\left(2x+4\right)\cdot5=-10\cdot2\)
\(\Rightarrow10x+20=-20\)
\(\Rightarrow10x=-40\)
\(\Rightarrow x=-4\)
\(A=\left\{150;155;160;165;...;920;925\right\}\)
- Số phần tử của A là : \(\left(925-150\right):5+1=156\)( phần tử )
=> A có 156 phần tử
Học tốt @_@
Giải
A = (2 + 22) + (23 + 24 ) +…(2199 + 2200)
A = 6 + 22 (2 + 22 ) +… + 2198 (2 + 22)
A = 6 + 22 (6 ) +… + 2198 (6)
A = 6(1 + 22 +… + 2198)
Vậy A chia hết cho 6
a)
x-3 | 1 | -1 | 7 | -7 |
2y +1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
b)
2x +1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | / | 19 | -3 | / | -1 | / | / | 1 |
Có 4 đáp số :(x =-1; y =19) ; (x =2 ; y =-3)
(x =5 ; y =-1) ; (x =-28 ; y =1)
a,(x-3)(2y+1)=7
Ta co: 7=1.7=7.1=(-1).(-7)=(-7).(-1)
\(\Rightarrow\)(x-3)(2y+1)=1.7 hay (x-3)(2y+1)=7.1 hay (x-3)(2y+1)=(-1).(-7) hay (x-3)(2y+1)=(-7).(-1)
TH1: \(\text{(x-3)(2y+1)=}1.7\Rightarrow\orbr{\begin{cases}\left(x-3\right)=1\\\left(2y+1\right)=7\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=3\end{cases}}\left(TM\right)}\)
TH2: \(\text{(x-3)(2y+1)=7.1}\Rightarrow\orbr{\begin{cases}\text{(x-3)=7}\\\text{ }\text{(2y+1)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=0\end{cases}}\left(TM\right)}\)
TH3:\(\text{(x-3)(2y+1)=(-1).(-7)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-1}\\\text{(2y+1)=-7}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-8\end{cases}\left(TM\right)}}\)
TH4: \(\text{(x-3)(2y+1)=(-7).(-1)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-7}\\\text{(2y+1)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-4\\y=-1\end{cases}\left(TM\right)}}\)
Vay (x,y)={(4,3);(10,0);(4,-8);(-4;-1)}
b, (2x+1)(3y-2)=-55
Ta co: -55=-1.55=1.(-55)=55.(-1)=-55.1=-11.5=11.(-5)=5.(-11)=-5.11
\(\Rightarrow\)(2x+1)(3y-2)=-1.55 hay (2x+1)(3y-2)=1.(-55) hay (2x+1)(3y-2)=55.(-1) hay (2x+1)(3y-2)=-55.1 hay (2x+1)(3y-2)=-11.5
hay (2x+1)(3y-2)=11.(-5) hay (2x+1)(3y-2)=5.(-11) hay (2x+1)(3y-2)=-5.11
TH1:\(\text{(2x+1)(3y-2)=-1.55}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-1}\\\text{(3y-2)=55}\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\y=19\end{cases}\left(TM\right)}}\)
TH2:\(\text{(2x+1)(3y-2)=1.(-55)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=1}\\\text{(3y-2)=-55}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}\Rightarrow}\left(loai\right)}\)
TH3:\(\text{(2x+1)(3y-2)=55.(-1)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=55}\\\text{(3y-2)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}\left(loai\right)}}\)
TH4: \(\text{(2x+1)(3y-2)=-55.1}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-55}\\\text{(3y-2)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-28\\y=1\end{cases}\left(TM\right)}}\)
TH5: \(\text{(2x+1)(3y-2)=-11.5}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-11}\\\text{(3y-2)=5}\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}\left(loai\right)}}\)
TH6: \(\text{(2x+1)(3y-2)=11.(-5)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=11}\\\text{(3y-2)=-5}\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\y=-1\end{cases}\left(TM\right)}}\)
TH7:\(\text{(2x+1)(3y-2)=5.(-11)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=5}\\\text{(3y-2)=-11}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-3\end{cases}\left(TM\right)}}\)
TH8:\(\text{(2x+1)(3y-2)=-5.11}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-5}\\\text{(3y-2)=11}\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}\left(loai\right)}}\)