Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\left(x+2\right)-x^2-2x=0\)
\(\Rightarrow5\left(x+2\right)-\left(x^2+2x\right)=0\)
\(\Rightarrow5\left(x+2\right)-x\left(x+2\right)=0\)
\(\Rightarrow\left(5-x\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5-x=0\\x+2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
Câu 1 :
a. \(4x-5=23\\ \Leftrightarrow4x=23+5\\ \Leftrightarrow4x=28\\ \Leftrightarrow x=7\)
b.
|-2x|=5x+14
Nếu - 2x > 0 => x < 0 thì |-2x|= - 2x, ta có pt: -2x = 5x+14
<=> - 2x = 5x + 14
<=> - 2x - 5x = 14
<=> - 7x = 14
<=> x = - 2 (thoã mãn)
Nếu - 2x < 0 => x > 0 thì |-2x|= = -(- 2x) = 2x.
Ta có pt: 2x = 5x + 14
<=> - 3x = 14
<=> x = \(-\dfrac{14}{3}\)
Vậy pt có nghiệm x = - 2
c) \(\dfrac{x+1}{x-1}-\dfrac{1}{x+1}=\dfrac{x^2+2}{x^2-1}\\ ĐKXĐ:x\ne1;x\ne-1\\ \Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{1\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2+2}{\left(x-1\right)\left(x+1\right)}\\ \Leftrightarrow x^2+x+x+1-x+1=x^2+2\\ \Leftrightarrow x^2+x+x-x-x^2=2-1-1\\ \Leftrightarrow x=0\left(nhận\right)\)
\(a,4x-5=23\)
\(\Leftrightarrow4x=23+5\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(b,\left|-2x\right|=5x+14\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5x+14\\2x=-5x-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x-14=0\\7x+14=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-3x=14\\7x=-14\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{14}{3}\\x=-2\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{14}{3};-2\right\}\)
\(c,\Leftrightarrow\dfrac{\left(x+1\right)\left(x+1\right)-x+1-x^2-2}{x^2-1}=0\)
\(\Leftrightarrow x^2+x+x+1-x+1-x^2-2=0\)
\(\Leftrightarrow x=0\)
Vậy \(S=\left\{0\right\}\)
\(\left(x-1\right)3+3x\left(x-1\right)=0\)
<=> \(3\left(x-1\right)\left(x+1\right)=0\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy...
a) x(x - 5) - 4x + 20 = 0
\(\Leftrightarrow\) x(x - 5) - (4x + 20)
\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x - 4)
Khi x - 5 = 0 hoặc x - 4 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 4
Vậy S = \(\left\{5;4\right\}\)
b) x(x + 6) - 7x - 42 = 0
\(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0
\(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0
\(\Leftrightarrow\) (x + 6)(x - 7) = 0
Khi x - 6 = 0 hoặc x - 7 = 0
\(\Leftrightarrow\) x = 6 \(\Leftrightarrow\) x = 7
Vậy S = \(\left\{6;7\right\}\)
c) x3 - 5x2 - x + 5 = 0
\(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0
\(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x2 - 1) = 0
\(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0
Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 1 \(\Leftrightarrow\) x = -1
Vậy S = \(\left\{5;1;-1\right\}\)
d) 4x2 - 25 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0
\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0
Khi 2x - 5 = 0 hoặc -x + 12 = 0
\(\Leftrightarrow\) 2x = 5 \(\Leftrightarrow\) -x = -12
\(\Leftrightarrow\) x = \(\dfrac{5}{2}\) \(\Leftrightarrow\) x = 12
Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)
e) x3 + 27 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0
\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0
\(\Leftrightarrow\) (x - 3)x(x - 2)
Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = 2
Vậy S = \(\left\{3;0;2\right\}\)
Chúc bạn học tốt
a) Ta có: \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
b) Ta có: \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
\(x^2-25=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)=\left(2x-1\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(2x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\-x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-4\end{cases}}\)
Vậy tập ngiệm của phương trình S = {-5;-4}