Cho C=1+2+2^2+2^3+...+2^99
CMR:C+1 có 31 chữ số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C = 1 + 2 +22 + .. +299
2C = 2 + 22 + 23 + ... + 2 100
=> 2C - C =( 2 + 22 + 23 + ... + 2 100) -( 1 + 2 +22 + .. +299 )
=> C = 2100 - 1
=> C+1 = 2100
Để chứng minh C+1 có 31 chữ số , ta chứng minh 1030< C+1 <1031
Ta có : C + 1 = 2100 = 230.270 = 230.12810
1030 = 230.530 = 230.12510
Vì : 128 > 125
=> 12810>12510
=>2100.12810>2100.12510
=>C+1 > 1030
Ta có: C+1 = 2100 = 231 . 269 = 231 . 263 . 26
= 231 . 5127. 43
10^31 = = 231 . 531= 2^31 . 5^28 . 5^3 = = 231 . 6257. 53
Vì : 512 <625 => 5127 < 6257
4 < 5 => 43 < 53
=>5127.43 < 6257.53
=>231.5127.43 < 231.6257.53
=> C+1 < 1031
Vì :C+1>1030
C+1 < 1031
=> 1030< C+1 <1031
=> C+1 có 31 chữ số
2C=2(1+2+22+23+...+299)
2C=2+22+23+24+....+299+2100
2C-C=(2+22+23+24+...+299+2100)-(1+2+22+23+24+....+299)
C=2100-1
=>C+11=2100-1+11
=>C+11=2100+10
mà 2^100 là số lớn hơn 999 (vì C>2^10=1024)
=>C+11 ko là số có 3 cs
chắc đề sai
Theo bài ra ta có: \(A=1+2+2^2+2^3+...+2^{99}\)
=>\(2A=2+2^2+2^3+2^4+...+2^{100}\)
Mà \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow A=2^{100}-1\)
\(\Rightarrow A+1=2^{100}\)
=> \(A+1=2^{99}.2\)
\(\Rightarrow A+1=\left(2^3\right)^{33}.2\)
=> \(A+1=8^{33}.2\)
Vì \(8^{33}\)có 33 chữ số
=> \(8^{33}.2\)có 33 chữ số
=> A+1 có 33 chữ số
Bn ơi bn chép sai đề bài rùi
Cho mk 1 k mk k lại 3
Mình hỏi chứng tỏ A+1 có 31 chữ số cơ mà.
Sao bạn lại làm A+1 có 33 chữ số?????????
1, ĐỀ SAI EM NHÉ, PHẢI LÀ 32 CHỮ SỐ MÓI ĐÚNG
ta có: \(2C=2+2^2+2^3+...+2^{99}+2^{100}\)
=> \(C=2C-C=2^{100}-1\Rightarrow C+1=2^{100}=2.\left(2^3\right)^{33}=2.8^{33}\)
Vậy => \(2.10^{32}< 2.8^{33}< 2.10^{33}\)
=> C +1 có 32 chữ số
2, Có: \(3^{x+2}+3^{x+1}+3^x< 1053\Leftrightarrow3^x\left(3^2+3+1\right)< 1053\)
\(\Leftrightarrow13.3^x< 1053\Leftrightarrow3^x< 81=3^4\Leftrightarrow x< 4\)
Vậy x=1,2,3
3, Ta có: a= 135k +88= 120k+15k +88
Do a cia 120 dư 58 => 15k+88 dư 58 => 15k + 30 chia hết cho 120
Do a nhỏ nhất nên chọn k thỏa mãn: 15k+30=120 <=> k=
=> số a là: 135.6+88=898
1)
C = 1 + 2 + 22 + 23 + ... + 299
2C = 2 + 22 + 23 + 24 + ... + 2100
2C - C = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )
C = 2100 - 1
=> C + 1 = 2100 - 1 + 1 = 2100
ta có : 1030 < 2100 vì 1030 = ( 103 ) 10 = 100010 < 2100 = ( 210 ) 10 = 102410
lại có : 2100 = 231 . 269 = 231 . 263 . 26 = 231 . ( 29 ) 7 . 64 = 231 . 5127 . 64 = 231 . ( 5127 . 64 )
1031 = ( 2 . 5 ) 31 = 231 . 531 = 231 . 528 . 53 = 231 . ( 54 ) 7 . 125 = 231 . 6257 . 125 = 231 . ( 6257 . 125 )
Vì 5127 . 64 < 6257 .125 nên 231 . ( 5127 . 64 ) < 231 . ( 6257 . 125 ) hay 2100 < 1031
1030 là số bé nhất có 31 chữ số ; 1031 là số bé nhất có 32 chữ số
Mà 1030 < 2100 < 1031
=> 2100 là số có 31 chữ số
Vậy C + 1 là số có 31 chữ số
Vì số a có 31 chữ số 1 nên tổng các chữ số của số a là: 31.1=31 chia 3 dư 1
Vì số b có 32 chữ số 1 nên tổng các chữ số của số b là: 32.1=32 chia 3 dư 2
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3=>a chia 3 dư 1; b chia 3 dư 2.
=>ab chia 3 dư 2
=>ab-2 chia hết cho 3 (đpcm)
C=1+2+22+23+....+299
=>2C=2+22+23+24+..+2100
=>2C-C=2100-1
=>C=2100-1
=>C+1=2100-1+1=2100
Để c/m C+1 có 31 chữ số,ta c/m 2100 có 31 chữ số
Ta có: 210=1024>103=>2100>1030 (1)
Mặt khác :210=1024<1025=>2100<102510
\(\Rightarrow\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)
Ta có: \(\frac{41}{40}<\frac{40}{39}<...<\frac{32}{31}<\frac{31}{30}\Rightarrow\frac{2^{100}}{10^{30}}<\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\)
=>2100<2.1030 (2)
từ (1);(2) =>1030<2100<2.1030
Vậy 2100 có 31 chữ số
=>đpcm