\(1+2+2^2+2^3+......+2^{99}\)

Chứng minh rằng C + 1 là số có 31 chữ số

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

C=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+......+(2^96+2^97+2^98+2^99+2^100)

C=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)+......+2^96(1+2+2^2+2^3+2^4)

C=2.31+2^6.31+......+2^96.31

C=31(2+2^6+....+2^96) chia hết cho 31(đpcm)

14 tháng 7 2017

chúc bạn học tốt

tick cho mk nha

11 tháng 5 2017

Phần a:

Có 100 số tự nhiên chia làm 20 nhóm từ trái sang phải mỗi nhóm năm số.

\(C=2.\left(1+2+4+8+16\right)+2^6.\left(1+2+4+8+16\right)+...+2^{96}.\left(1+2+4+8+16\right)\)

\(C=2.31+2^6.31+2^{11}.31+...+2^{96}.31\)

=> C chia hết cho 31.

Chúc em học tốt^^

11 tháng 5 2017

\(2.C=2^2+2^3+....+2^{101}\)

\(=>2C-C=C=2^2-2^2+2^3-2^3+....+2^{100}-2^{100}+2^{101}-2\)

\(C=2^{101}-2\)

Do đó 2x-1=101

=>x=51

Chúc em học tốt^^

11 tháng 5 2017

a)\(C=2+2^2+2^3+....+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+2^5\left(2+2^2+2^3+2^4+2^5\right)+...+2^{95}\left(2+2^2+2^3+2^4+2^5\right)\)

\(=62+2^5.62+...+2^{95}.62=62\left(1+2^5+...+2^{95}\right)=31.2\left(1+2^5+....+2^{95}\right)⋮31\)

\(\Rightarrow C⋮31\)

=>đccm

11 tháng 5 2017

\(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(C=\left(2+2^2+2^3+2^4+2^5\right)+....+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(C=2.\left(1+2+2^2+2^3+2^4\right)+....+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)

\(C=31.2+.....+2^{96}.31=31.\left(2+....+2^{96}\right)⋮31\)

Suy ra \(C⋮31\)

b) Ta có \(2.C=2^2+2^3+2^4+....+2^{99}+2^{100}+2^{101}\)

Suy ra \(2.C-C=2^{101}-2\)hay \(C=2^{101}-2\)

Khi đó \(2^{2x-1}-2=2^{101}-2\)

\(\Rightarrow2^{2x-1}=2^{101}\)

\(\Rightarrow2x-1=101\Rightarrow2x=100\Rightarrow x=50\)

Vậy x = 50

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

17 tháng 11 2016

a/C=2+2^2+2^3+.........+2^100

<=>2C-C=2(2+2^2+2^3+.....+2^100)-(2+2^2+2^3+.....+2^100)

C=2.2+2.2^2+2.2^3+....+2.2^100-(2+2^2+2^3+.....+2^100)

C=2^2+2^3+2^4+...+2^101-(2+2^2+2^3+.....+2^100)

Bạn loại các số giống nhau ta có:

C=2^101-2

b/C=2+2^2+2^3+.........+2^100

<=>C=(2+2^2+2^3+2^4+2^5)+......+(2^96+2^97+2^98+2^99+2^100)(nhóm 5 số lại nha)

=>C=62+2^6.(1+2+2^2+2^3+2^4)+....+2^96.(1+2+2^2+2^3+2^4)

<=>C=31.2+2^6.31+2^11.31+...+2^96.31

Đặt 31 làm thừa số chung.

C=31.(2+2^6+2^11+2^16+...+2^96) chia hết cho 31

Vậy C chia hết cho 31=>đpcm

c/22x-1-2=C

22x-1-2=2101-2

=>22x-1=2101

=>2x-1=101

2x     =101-1

2x     =100

x       =100:2

x      =50

17 tháng 11 2016

Đây là bài CLB của mk nên khó ở phần c thôi

:D