K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
8 tháng 12 2021

ta có y nguyên không âm nên ta có : 

\(x+\sqrt{y}=y^2\Leftrightarrow x=y^2-\sqrt{y}\)

vì vậy với mọi số y là số chính phương thì x luôn là số nguyên

vậy phương trình có vô số nghiệm nguyên có dạng : 

\(\hept{\begin{cases}y\text{ chính phương }\\x=y^2-\sqrt{y}\end{cases}}\)

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

PT $\Leftrightarrow \sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1$

$\Rightarrow x+y+3=(\sqrt{x}+\sqrt{y}-1)^2$

$\Leftrightarrow x+y+3=x+y+1-2(\sqrt{x}+\sqrt{y}-\sqrt{xy})$

$\Leftrightarrow 1+\sqrt{x}+\sqrt{y}-\sqrt{xy}=0(*)$

$\Rightarrow (\sqrt{x}+\sqrt{y})^2=(\sqrt{xy}-1)^2$

$\Rightarrow 4\sqrt{xy}=xy+1-x-y\in\mathbb{Z}$

Ta có nhận xét sau: Với số không âm $a$ bất kỳ thì khi $\sqrt{a}$ là số hữu tỉ thì $\sqrt{a}$ cũng là số chính phương.

Do đó: $\sqrt{xy}$ là scp

Kết hợp $(*)$ suy ra $\sqrt{x}+\sqrt{y}\in\mathbb{Z}$

$\sqrt{x}(\sqrt{x}+\sqrt{y})=x+\sqrt{xy}\in\mathbb{Z}$

$\Rightarrow \sqrt{x}=\frac{x+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\in\mathbb{Q}$

$\Rightarrow \sqrt{x}$ là scp. Kéo theo $\sqrt{y}$ là scp.

Từ $(*)$ ta cũng có $(\sqrt{x}-1)(1-\sqrt{y})=-2$

Đến đây thì với $\sqrt{x}, \sqrt{y}\in\mathbb{Z}$ ta có pt tích khá đơn giản.

 

3 tháng 6 2021

\(\sqrt{x+y+3}+1=\sqrt{x}+\sqrt{y}\)

Bình phương 2 vế, ta có:

\(x+y+3+1=x+y\)

\(x+y+3+1-x-y=0\)

\(4=0\) (vô lý)

Vậy phương trình vô nghiệm

-Chúc bạn học tốt-

Bạn sai rồi nhé. Xem lại chỗ bình phương.

NV
29 tháng 3 2021

\(\Rightarrow x+2\sqrt{3}=y+z+2\sqrt{yz}\)

\(\Rightarrow2\sqrt{yz}=\left(x-y-z\right)+2\sqrt{3}\)

\(\Rightarrow4yz=\left(x-y-z\right)^2+12+4\sqrt{3}\left(x-y-z\right)\)

\(\Rightarrow4\sqrt{3}\left(x-y-z\right)=4yz-12-\left(x-y-z\right)^2\) (1)

\(\sqrt{3}\) là số vô tỉ nên đẳng thức xảy ra khi: \(x-y-z=0\)

Thay ngược vào (1) \(\Rightarrow yz=3\Rightarrow\left(y;z\right)=\left(1;3\right);\left(3;1\right)\)

\(\Rightarrow\sqrt{x+2\sqrt{3}}=\sqrt{4+2\sqrt{3}}\Rightarrow x=4\)

17 tháng 5 2017

chỉ có thể là 0

30 tháng 3 2018

Ta có: \(x+\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2\)

\(\Rightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x=a\) 

\(\Rightarrow x+\sqrt{x+\sqrt{x}}=a^2\)\(\Rightarrow\sqrt{x+\sqrt{x}}=a^2-x=b\)

\(\Rightarrow x+\sqrt{x}=b^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)

Có √x và √(x+1) là 2 số liên tiếp và b^2 là số chính phương nên √x =0 hoặc √x +1 =0

=> x =0 hoặc √x = -1 ( vô nghiệm)

Với x =0 => y=0

Vậy (x;y) = (0;0)

31 tháng 12 2018

ĐKXĐ: x;y > 0

\(pt\Leftrightarrow\sqrt{x+\sqrt{x+\sqrt{x}}}=y^2-x\)(bình phương + chuyển vế)

 Vì \(\hept{\begin{cases}x;y\inℤ\\x;y\ge0\end{cases}\Rightarrow}x;y\inℕ\)

                           \(\Rightarrow y^2-x\inℕ\)(Vì VP > 0 nên VT > 0 mà 2 số này thuộc N nên hiệu của chúng thuộc N)

Đặt \(y^2-x=a\left(a\inℕ\right)\)

Khi đó \(\sqrt{x+\sqrt{x+\sqrt{x}}}=a\)

    \(\Leftrightarrow\sqrt{x+\sqrt{x}}=a^2-x\)(bình phương+chuyển vế)

Tương tự như trên 

Đặt \(a^2-x=b\left(b\inℕ\right)\)

\(\Rightarrow\sqrt{x+\sqrt{x}}=b\)

\(\Leftrightarrow x+\sqrt{x}=b^2\left(1\right)\)

Từ (1) => \(\sqrt{x}\inℕ\)

Ta có: \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=b^2\)

Vì \(\sqrt{x}\)và \(\sqrt{x}+1\)là 2 số tự nhiên liên tiếp

Mà b2 là số chính phương

\(\Rightarrow\sqrt{x}=0\)

\(\Rightarrow x=0\)

\(\Rightarrow y=0\)

Vậy pt có nghiệm duy nhất (x;y) = (0;0)

10 tháng 10 2016

Điều kiện xác định ; \(\hept{\begin{cases}x,y\ge0\\x,y\in Z\end{cases}}\)

Ta có : \(\sqrt{x}+\sqrt{y}=\sqrt{931}\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=931\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2-x+y=931-x+y\)

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}\right)^2+\sqrt{y}.\sqrt{y}=931-x+y\)

\(\Leftrightarrow2\sqrt{y}.\left(\sqrt{x}+\sqrt{y}\right)=931-x+y\)

\(\Leftrightarrow4y\left(\sqrt{x}+\sqrt{y}\right)^2=\left(931-x+y\right)^2\)

\(\Leftrightarrow4y.931=\left(931-x+y\right)^2\)

\(\Leftrightarrow2^2.7^2.19.y=\left(931-x+y\right)^2\)

Nhận xét : Vế phải là bình phương của một số tự nhiên, do vậy đẳng thức xảy ra khi vế trái cũng là bình phương của một số tự nhiên. Vậy thì \(y=19.k^2\)với k là một số tự nhiên

Ta xét với k = 1,2,3,.... thì chọn được k = 7 thỏa mãn. (Chú ý điều kiện \(y\le931\))

Vậy (x;y) = (0;931) ; (931;0)

Ta vẫn chọn được hai cặp (x;y) vì do vai trò của hai số này bình đẳng.

10 tháng 10 2016

chao p

10 tháng 1 2018

\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)

\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)

Ta có VP là số nguyên nên VT cũng phải là số nguyên

Giả sử \(yz=a^2\) thì VT không phải số nguyên

Nên yz không phải số chính phương.

Nên để VT là số nguyên thì chỉ có thể là O

\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)

\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương

Vậy PT vô nghiệm