K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

\(B=1+\dfrac{1}{2}\cdot\dfrac{\left(1+2\right)\cdot2}{2}+\dfrac{1}{3}\cdot\dfrac{\left(1+3\right)\cdot3}{2}+...+\dfrac{1}{20}\cdot\dfrac{\left(20+1\right)\cdot20}{2}\\ B=1+\dfrac{3}{2}+2+\dfrac{5}{2}+...+10+\dfrac{21}{2}\\ B=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{20}{2}+\dfrac{21}{2}\\ B=\dfrac{2+3+...+20+21}{2}=\dfrac{\dfrac{\left(21+2\right)\cdot20}{2}}{2}=\dfrac{23\cdot10}{2}=115\)

7 tháng 12 2021

em cảm ơn ạhihi

30 tháng 1 2023

\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)

\(=1+\dfrac{3\cdot2\div2}{2}+\dfrac{4\cdot3\div2}{3}+...+\dfrac{21\cdot20\div2}{20}\)

\(=1+\dfrac{3}{2}+2+...+\dfrac{21}{2}\) (A)

Trong (A) có \(\dfrac{\dfrac{21}{2}-1}{\dfrac{3}{2}-1}+1=20\) (số hạng)

Suy ra \(\left(A\right)=\left(\dfrac{21}{2}+1\right)\cdot20\div2=115\)

Vậy \(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)=115\)

 

20 tháng 12 2021

e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)

18 tháng 11 2023

A = - 522 - { - 222 - [ - 122 - (100 - 522) + 2022] }

A = - 522 - { -222 - [- 122 - 100 + 522 ] + 2022}

A = - 522 - { -222 - { - 222 + 522 } + 2022}

A = - 522 - {- 222 + 222 - 522 + 2022}

A = -522 + 522 - 2022

A = - 2022

18 tháng 11 2023

B = 1 + \(\dfrac{1}{2}\)(1 + 2) + \(\dfrac{1}{3}\).(1 + 2 + 3) + ... + \(\dfrac{1}{20}\).(1 + 2+ 3 + ... + 20)

B = 1+\(\dfrac{1}{2}\)\(\times\)(1+2)\(\times\)[(2-1):1+1]:2+ ... + \(\dfrac{1}{20}\)\(\times\) (20 + 1)\(\times\)[(20-1):1+1]:2

B = 1 + \(\dfrac{1}{2}\) \(\times\) 3 \(\times\) 2:2 + \(\dfrac{1}{3}\) \(\times\)4 \(\times\) 3 : 2+....+ \(\dfrac{1}{20}\) \(\times\)21 \(\times\) 20 : 2

B = 1 + \(\dfrac{3}{2}\) + \(\dfrac{4}{2}\) + ....+ \(\dfrac{21}{2}\)

B = \(\dfrac{2+3+4+...+21}{2}\)

B = \(\dfrac{\left(21+2\right)\left[\left(21-2\right):1+1\right]:2}{2}\)

B = \(\dfrac{23\times20:2}{2}\)

B = \(\dfrac{23\times10}{2}\)

B = 23 

10 tháng 3 2017

\(B=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{20}\left(1+2+...+20\right)\)

\(\Rightarrow B=1+\dfrac{1}{2}.2.3\div2+\dfrac{1}{3}.3.4\div2+...+\dfrac{1}{20}.20.21\div2\)

\(\Rightarrow B=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{21}{2}\)

\(\Rightarrow B=\dfrac{2+3+4+...+21}{2}\)

\(\Rightarrow B=\dfrac{230}{2}\)

\(\Rightarrow B=115\)

Vậy \(B=115\)

10 tháng 12 2023

Sửa đề:

 \(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

ĐKXĐ: \(x\notin\left\{1;3;8;20\right\}\)

PT=>\(-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-8}-\dfrac{1}{x-8}+\dfrac{1}{x-20}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)

=>\(-\dfrac{1}{x-4}=-\dfrac{3}{4}\)

=>\(x-1=\dfrac{4}{3}\)

=>\(x=\dfrac{4}{3}+1=\dfrac{7}{3}\)(nhận)

20 tháng 12 2022

\(=\left(\dfrac{1}{2}-\dfrac{6}{5}\right):\dfrac{21}{20}-\dfrac{25}{4}+\dfrac{1}{2}=\dfrac{-7}{10}\cdot\dfrac{20}{21}-\dfrac{23}{4}\)

\(=\dfrac{-2}{3}-\dfrac{23}{4}=\dfrac{-8-69}{12}=-\dfrac{77}{12}\)

4 tháng 10 2021

ừ bài nâng cao mà bạn ơi :)))

4 tháng 10 2021

\(P=\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{3}\right)^4+...+\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\)

\(=\left(\dfrac{1}{3}-\left(\dfrac{1}{3}\right)^2\right)+\left(\left(\dfrac{1}{3}\right)^3-\left(\dfrac{1}{4}\right)^4\right)+...+\left(\left(\dfrac{1}{3}\right)^{19}-\left(\dfrac{1}{3}\right)^{20}\right)\)

\(=\dfrac{1}{3}.\dfrac{2}{3}+\left(\dfrac{1}{3}\right)^3.\dfrac{2}{3}+...+\left(\dfrac{1}{3}\right)^{19}.\dfrac{2}{3}\)

\(=\dfrac{2}{3}.\left[\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^3+...+\left(\dfrac{1}{3}\right)^{19}\right]\)