K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2016

=\(2\)x(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\))

=2x(\(\frac{1}{3}-\frac{1}{21}\))

=2x\(\frac{2}{7}\)

=\(\frac{4}{7}\)

20 tháng 2 2016

\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)

\(2A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)

\(2A=\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{19}-\frac{2}{21}\)

\(2A=\frac{2}{3}-\frac{2}{21}\)

\(2A=\frac{4}{7}\)

\(A=\frac{2}{7}\)

30 tháng 3 2017

\(\frac{1}{1\times3}\) \(+\) \(\frac{1}{3\times5}\) \(+\) \(\frac{1}{5\times7}\) \(+\) \(...\) \(\frac{1}{19\times21}\)

\(=\) \(\frac{943}{1995}\)

30 tháng 3 2017

A=1-1 phần 2 +1 phần 2 -1 phần 3.... + 1phan19 - 1 phần 21

A= 1- 1 phần 21

A= 20 phần 21

15 tháng 10 2014

Đây là tổng của 2 dãy:

\(\frac{1}{1\times3\times5}+\frac{1}{3\times5\times7}+\frac{1}{5\times7\times9}+...+\frac{1}{995\times997\times999}\)(1)

và 

\(\frac{1}{2\times5\times8}+\frac{1}{5\times8\times11}+\frac{1}{8\times11\times14}+...+\frac{1}{1493\times1496\times1499}\)(2)

Dãy số có dạng là tích 3 thừa số, trong đó thừa số thứ 3 hơn thừa số thứ nhất n đơn vị và 2 thừa số cuối của phân số trước là 2 thừa số đầu của phân số sau. Để tính dãy kiểu này cần đưa tử số về hiệu của thừa số thứ 3 và thừa số thứ nhất (hiệu = n):

Vậy nhân dãy thứ nhất với 4:

\(=\frac{4}{1\times3\times5}+\frac{4}{3\times5\times7}+\frac{4}{5\times7\times9}+...+\frac{4}{995\times997\times999}\)

Nhận xét:

  • \(\frac{4}{1\times3\times5}=\frac{5-1}{1\times3\times5}=\frac{5}{1\times3\times5}-\frac{1}{1\times3\times5}=\frac{1}{1\times3}-\frac{1}{3\times5}\)
  • \(\frac{4}{3\times5\times7}=\frac{7-3}{3\times5\times7}=\frac{7}{3\times5\times7}-\frac{3}{3\times5\times7}=\frac{1}{3\times5}-\frac{1}{5\times7}\)

Vậy 4 lần tổng dãy 1 là:

\(\frac{1}{1\times3}-\frac{1}{3\times5}+\frac{1}{3\times5}-\frac{1}{5\times7}+...+\frac{1}{995\times997}-\frac{1}{997\times999}\)

\(\frac{1}{1\times3}-\frac{1}{997\times999}\)

Suy ra tổng dãy (1) là \(\left(\frac{1}{3}-\frac{1}{997\times999}\right)\times\frac{1}{4}\)

Làm tương tự tính được tổng dãy (2) là: \(\left(\frac{1}{2\times5}-\frac{1}{1496\times1499}\right)\times\frac{1}{6}\)

Cộng 2 kết quả lại được tổng cần tính

 

25 tháng 9 2017

   1 x 3 x 5 + 2 x 6 x 10 + 4 x 10 x 12 + 7 x 21 x 35 / 1 x 5 x 7 + 2 x 10 x 14 + 4 x 20 x 28 + 7 x 35 x 49

= 3 / 7 + 6 / 14 + 10 x 2 x 6 / 10 x 2 x 28 + 21 / 49

= 3 / 7 + 6 / 14 + 6 / 28 + 21 / 49 

= 3 / 7 + 6 / 14 + 3 / 14 + 3 / 7 

= ( 3 / 7 + 3 / 7 ) + ( 6 / 14 + 3 / 14 )

=         6 / 7 + 9 14 

= 12 / 14 + 9 / 14 

= 21 / 14

nho hem 

lm dau tien lun do 

dung 100% nha 

19 tháng 9 2019

Đặt \(A=\frac{1}{1.2.3}+\frac{1}{3.5.7}+...+\frac{1}{45.47.49}\)

\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{45.47.49}\)

\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{45.47}-\frac{1}{47.49}\)

\(=\frac{1}{3}-\frac{1}{47.49}\)

\(\Rightarrow A=\frac{\frac{1}{3}-\frac{1}{47.49}}{4}=\frac{575}{6909}\)

17 tháng 7 2017

Cho mk sửa lại đáp án là \(\frac{100}{201}\)nha bn

17 tháng 7 2017

Ta có: \(N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{199.201}\)

\(\Rightarrow2N=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{199.201}\)

\(\Rightarrow2N=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{199}-\frac{1}{201}\)

\(\Rightarrow2N=\frac{1}{1}-\frac{1}{201}\)

\(\Rightarrow2N=\frac{200}{201}\)

\(\Rightarrow N=\frac{200}{201}:2=\frac{100}{101}\)

tk cho mk nha bn

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+...+\frac{1}{2}.\left(\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)

\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

2 tháng 8 2016

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\)

\(=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\)

21 tháng 1 2017

đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}\) 

ta có:

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{91.93}\) 

=> 2A = \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{91.93}\) 

=> 2A = \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{91}-\frac{1}{93}\) 

=> 2A = \(\frac{1}{1}-\frac{1}{93}\) 

2A = \(\frac{92}{93}\) 

=> A = \(\frac{92}{93}:2\)

A = \(\frac{46}{93}\)

21 tháng 1 2017

=1-1/3+1/3-1/5+1/5-1/7+.........+1/91-1/93

=>1-1/93=92/92

15 tháng 8 2016

=1/2 x ( 1-1/3+1/3-1/5+1/5-1/7+...+1/2013-1/2015)

=1/2 x ( 1-1/2015 )

=1/2 x 2014/2015

=1007/2015