Rút gọn A = x/x-2/ trên x^2 + 8x - 20
chú ý: / / là giá trị tuyệt đối
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết như thế này khó quan sát quá.
a: \(B=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x-2}{2x-1}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)}\cdot\dfrac{1}{2x-1}=\dfrac{-4x\left(x+2\right)}{\left(x+2\right)\left(2x-1\right)}=\dfrac{-4x}{2x-1}\)
b: |x|=3
=>x=3 hoặc x=-3
Khi x=3 thì \(B=\dfrac{-4\cdot3}{2\cdot3-1}=\dfrac{-12}{5}\)
Khi x=-3 thì \(B=\dfrac{-4\cdot\left(-3\right)}{2\cdot\left(-3\right)-1}=\dfrac{12}{-7}=\dfrac{-12}{7}\)
Đối với bài này, ta sẽ xét các khoảng giá trị của x :
Khi đó , \(E=2\left(3-x\right)+-x-1-5=-3x\)
Khi đó, \(E=2\left(x-3\right)+\left(x+1\right)-5=3x-10\)
Khi đó \(E=2\left(3-x\right)+\left(x+1\right)-5=-x+2\)
Vậy .....
Viết thế này gọn hơn của Ngọc xíu:
\(E=\hept{\begin{cases}x< -1\mid:2\left(3-x\right)-\left(x+1\right)-5\\-1\le x< 3\mid:2\left(3-x\right)+x+1-5\\x\ge3\mid2:\left(x-3\right)+x+1-5\end{cases}=\hept{\begin{cases}x< -1\mid:-3x\\-1\le x< 3\mid:-x+2\\x\ge3\mid:3x-10\end{cases}}}\)