K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

Câu 25: \(ĐK:m\ne0\)

PT có 2 nghiệm pb

\(\Leftrightarrow\Delta=4\left(m-2\right)^2-4m\left(m-3\right)>0\\ \Leftrightarrow4m^2-16m+16-4m^2+12m>0\\ \Leftrightarrow16-4m>0\Leftrightarrow m< 4\)

Vậy \(m< 4;m\ne0\)

NV
8 tháng 8 2021

Phương trình có 2 nghiệm pb khi:

\(\Delta=m^2+4m^2>0\Leftrightarrow5m^2>0\)

\(\Rightarrow m\ne0\)

Δ=m2+4m2>0⇔5m2>0Δ=m2+4m2>0⇔5m2>0

m≠0

8 tháng 2 2018

x 2  – 2(m+3)x +  m 2 +3=0     (1)

Ta có: ∆ ' = - m + 3 2  -1.( m 2  +3) =  m 2  + 6m + 9 –  m 2  - 3

= 6m +6

Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

∆ ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1

Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt

25 tháng 10 2018

Phương trình mx2 – 2(m – 1)x + m – 3 = 0

có a = m; b’ = − (m – 1); c = m – 3

Suy ra  = [− (m – 1)]2 – m(m − 3) = m + 1

Để phương trình có hai nghiệm phân biệt thì

a ≠ 0 Δ ' > 0 ⇔ m ≠ 0 m + 1 > 0 ⇔ m ≠ 0 m > − 1

Nên với đáp án A: m = − 5 4 < − 1

thì phương trình không có hai nghiệm phân biệt

Đáp án cần chọn là: A

5 tháng 1 2017

x 2  + 2(m + 5)x + 6m - 30 = 0

a) Δ' = b ' 2  - ac = m + 5 2  - (6m - 30)

=  m 2  + 10m + 25 - 6m + 30 = m 2  + 4m + 55

=  m 2  + 4m + 4 + 51 = m + 2 2  + 51 > 0 ∀m

Vậy phương trình đã cho luôn có 2 nghiệm phân biệt với mọi m

3 tháng 1 2020

Phương trình (1):

+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy: Phương trình (1) có hai nghiệm phân biệt khi m < Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9; có nghiệm kép khi m = Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9 và vô nghiệm khi m > Giải bài 24 trang 50 SGK Toán 9 Tập 2 | Giải toán lớp 9

\(\text{Δ}=\left(-m\right)^2-4\left(-2m^2+3m-2\right)\)

\(=m^2+8m^2-12m+8\)

\(=9m^2-12m+8\)

\(=9m^2-12m+4+4=\left(3m-2\right)^2+4>0\)

Do đó: PHương trình luôn có hai nghiệm phân biệt

28 tháng 5 2022

Ptr có:`\Delta=(-m)^2-4(-2m^2+3m-2)`

                    `=m^2+8m^2-12m+8`

                    `=9m^2-12m+8`

                    `=(3m-2)^2+4 > 0 AA m`

 `=>` Pt có `2` nghiệm phân biệt `AA m`

TH1: m=3

Pt sẽ là (3+3)x-(3+1)=0

=>6x-4=0

=>x=2/3

=>Loại

TH2: m<>3

Δ=(m+3)^2-4(m-3)(-m-1)

=m^2+6m+9+4(m-3)(m+1)

=m^2+6m+9+4(m^2-2m-3)

=5m^2-2m-3

Để phương trình có hai nghiệm dương phân biệt thì

5m^2-2m-3>0 và (-m-3)/(m-3)>0 và (-m-1)/(m-3)>0

=>(m-1)(5m+3)>0 và (m+3)/(m-3)<0 và (m+1)/(m-3)<0

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -\dfrac{3}{5}\end{matrix}\right.\\-3< m< 3\\-1< m< 3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< -\dfrac{3}{5}\\1< m< 3\end{matrix}\right.\)