Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x2 – 2(m+3)x + m2+3=0 (1)
Ta có: Δ' = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 - 3
= 6m +6
Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
Δ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1
Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt
b. (m+1)x2+4mx+4m -1 =0 (2)
Ta có: Δ' = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1
= 1 – 3m
Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:
*m +1 ≠ 0 ⇔ m ≠ -1
và *Δ' > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3
Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt
(Bạn viết phương trình nhé, nó dài nên ngại viết lắm =.=) (a = 1; b' = - m - 1; c = m ^ 2)
Xét phương trình trên có a = 1 khác 0 => Phương tình là phương trình bậc 2 một ẩn
Để phương trình có 2 nghiệm phân biệt <=> \(\Delta'>0\)
<=> b' ^ 2 - ac > 0
<=> (- m - 1) ^ 2 - 1. m ^ 2 > 0
<=> m ^2 + 2m + 1 - m ^ 2 > 0
<=> 2m + 1 > 0
<=> 2m > - 1
<=> m > - 0,5
Vậy để phương trrình có 2 nghiệm phân biệt thì m > - 0,5
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m < \(\dfrac{1}{2}\)
Phương trình vô nghiệm khi m > \(\dfrac{1}{2}\)
Phương trình có nghiệm kép khi m = \(\dfrac{1}{2}\).
a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m - 1), b' = -(m - 1), c = m2
∆' = [-(m - 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m
b) Ta có ∆’ = 1 – 2m
Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi m <
Phương trình vô nghiệm khi m >
Phương trình có nghiệm kép khi m = .
a) Xét \(\Delta=\left(m+1\right)^2-2m+3=m^2+4>0,\forall m\)
Vậy PT luôn có 2 nghiệm phân biệt.
b) \(f\left(x\right)=x^2-\left(m+1\right)x+2m-3=0\)có nghiệm \(x=3\)khi và chỉ khi
\(f\left(3\right)=0\Leftrightarrow3^2-\left(m+1\right).3+2m-3=0\Leftrightarrow3-m=0\Leftrightarrow m=3\)
a) Thay x=-3 vào phương trình 2x2 – m2x +18m =0 ta được:
2(-3)2 - m2(-3) + 18m =0 ⇔ 3m2 +18m+18 =0
⇔ m2 + 6m +6 = 0
Δ' = 32 -1.6 = 9 -6 =3 > 0
√Δ' = √3
Phương trình có 2 nghiệm phân biệt:
Vậy với m=3 - 3 hoặc m=- 3- 3 thì phương trình đã cho có nghiệm x= -3
b) Thay x = -2 vào phương trình mx2 – x – 5m2 = 0 ta được:
m(-2)2 – (-2) – 5m2=0 ⇔ 5m2 – 4m -2 =0
Δ' = (-2)2 -5.(-2) = 4+10 = 14 > 0
√Δ' = √14
Phương trình có 2 nghiệm phân biệt:
ta có phương trình x^2 +3x +m =0
nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4
theo Viét nếu x1 và x2 là 2 nghiệm của pt thì
x1 +x2 =-3 (1)và
x1*x2=m => 2x1*x2 =2m (2)
=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )
mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có
31 +2m =9
m = -11
x 2 – 2(m+3)x + m 2 +3=0 (1)
Ta có: ∆ ' = - m + 3 2 -1.( m 2 +3) = m 2 + 6m + 9 – m 2 - 3
= 6m +6
Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
∆ ' > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1
Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt