KHÔNG LÀM CÂU ab cũng được, mik chỉ cần cd thui!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác OMA và tam giác OMB:
OM chung.
OA = OB (gt).
MA = MB (M là trung điểm của đoạn thẳng AB).
=> ∆ OMA = ∆ OMB (c - c - c).
b) Xét tam giác OAB:
OA = OB (gt).
=> Tam giác OAB cân tại O.
Mà OM là đường trung tuyến (M là trung điểm của đoạn thẳng AB).
=> OM là đường cao (Tính chất tam giác cân).
=> OM vuông góc với AB.
c) Xét tam giác HON vuông tại H và tam giác KON vuông tại K:
ON chung.
\(\widehat{HON}=\widehat{KON}\) (∆ OMA = ∆ OMB).
=> Tam giác HON = Tam giác KON (cạnh huyền - góc nhọn).
=> NH = NK (2 cạnh tương ứng).
d) Xét tam giác OHK:
OH = OK (Tam giác HON = Tam giác KON).
=> Tam giác OHK cân tại O.
Xét tam giác OHK cân tại O:
OP là trung tuyến (P là trung điểm của đoạn HK).
=> OP là phân giác góc O (Tính chất tam giác cân). (1)
Xét tam giác OAB cân tại O:
OM là trung tuyến (M là trung điểm của đoạn AB).
=> OM là phân giác góc O (Tính chất tam giác cân). (2).
=> Ba điểm O, M, P thẳng hàng.
b) Xét 2 tg AOM và tg BOM có
OA=OB GT
OM chung GT
AM=BM vì M là TĐ AB
Suy ra tg AOM=tg BOM (c.c.c)
Suy ra góc OMA=góc OMB
Do OMB+OMA=180 độ kề bù
Suy ra góc OMB=OMA=180:2=90độ
Do đó OM vuông với AB
Đầu tiên bạn vẽ hình đã.
a) Xét 2 tam giác AMN và BMO có:
AM=MB(M là tđ của AB)
Góc AMN=góc BMO(đối đỉnh)
OM=ON(GT)
Suy ra tg AMN=tg BMO
Suy ra AN=OB
mãi mới có 1 bài toán lớp 7
hình :
xét \(\Delta OAI\)và \(\Delta OBI\)
OA = OB ( gt)
IA=IB ( I là trung điểm của AB)
OI - cạnh chung
=>\(\Delta OAI\)=\(\Delta OBI\)(c.c.c)
vì \(\Delta OAI\)=\(\Delta OBI\)
=>\(\widehat{AOI}\)=\(\widehat{BOI}\)(2 góc tương ứng)
OI nằm giữa 2 tia Ox và Oy
=> OI là pg của \(\widehat{xOy}\)
câu 2 và 3 dễ rồi bạn tự làm đi được ko z mik lười lắm
cho góc nhọn xoy oz là tia phân giác của góc đó. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Gọi I là giao điểm của Oz và AB
a) Chứng minh: Góc BIM = Góc AIN
b) Chứng minh: MN // AB
M,N ở đâu ra
a: Xét ΔOMA và ΔOMB có
OM chung
MA=MB
OA=OB
Do đó: ΔOMA=ΔOMB
b: Xét ΔMAN và ΔMBO có
MA=MB
\(\widehat{AMN}=\widehat{BMO}\)(hai góc đối đỉnh)
MN=MO
Do đó: ΔMAN=ΔMBO
=>\(\widehat{MAN}=\widehat{MBO}\)
c: Sửa đề:chứng minh K,M,H thẳng hàng
Ta có: \(\widehat{MAN}=\widehat{MBO}\)
mà hai góc này là hai góc ở vị trí so le trong
nên OB//AN
Ta có: ΔMBO=ΔMAN
=>BO=AN(1)
Ta có: K là trung điểm của OB
=>\(OK=KB=\dfrac{OB}{2}\left(2\right)\)
Ta có:H là trung điểm của AN
=>\(HA=HN=\dfrac{AN}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra OK=KB=HA=HN
Xét tứ giác OKNH có
OK//NH
OK=NH
Do đó: OKNH làhình bình hành
=>ON cắt KH tại trung điểm của mỗi đường
mà M là trung điểm của ON
nên M là trung điểm của KH
=>K,M,H thẳng hàng