K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2022

a) Xét tam giác OMA và tam giác OMB:

OM chung.

OA = OB (gt).

MA = MB (M là trung điểm của đoạn thẳng AB).

=> ∆ OMA = ∆ OMB (c - c - c).

b) Xét tam giác OAB:

OA = OB (gt).

=> Tam giác OAB cân tại O.

Mà OM là đường trung tuyến (M là trung điểm của đoạn thẳng AB).

=> OM là đường cao (Tính chất tam giác cân).

=> OM vuông góc với AB.

c) Xét tam giác HON vuông tại H và tam giác KON vuông tại K:

ON chung.

\(\widehat{HON}=\widehat{KON}\) (∆ OMA = ∆ OMB).

=> Tam giác HON = Tam giác KON (cạnh huyền - góc nhọn).

=> NH = NK (2 cạnh tương ứng).

d) Xét tam giác OHK: 

OH = OK (Tam giác HON = Tam giác KON).

=> Tam giác OHK cân tại O.

Xét tam giác OHK cân tại O:

OP là trung tuyến (P là trung điểm của đoạn HK).

=> OP là phân giác góc O (Tính chất tam giác cân). (1)

Xét tam giác OAB cân tại O:

OM là trung tuyến (M là trung điểm của đoạn AB).

=> OM là phân giác góc O (Tính chất tam giác cân). (2).

=> Ba điểm O, M, P thẳng hàng.

 
11 tháng 11 2016

b) Xét 2 tg AOM và tg BOM có

OA=OB GT

OM chung GT

AM=BM vì M là TĐ AB

Suy ra tg AOM=tg BOM (c.c.c)

Suy ra góc OMA=góc OMB

Do OMB+OMA=180 độ kề bù

Suy ra góc OMB=OMA=180:2=90độ

Do đó OM vuông với AB

11 tháng 11 2016

Đầu tiên bạn vẽ hình đã.

a) Xét 2 tam giác AMN và BMO có:

AM=MB(M là tđ của AB)

Góc AMN=góc BMO(đối đỉnh)

OM=ON(GT)

Suy ra tg AMN=tg BMO

Suy ra AN=OB

 

 

17 tháng 3 2020

a) Xét ΔOAHΔOAH và ΔOBHΔOBH ta có:

            OA = OB (theo giả thiết)

            HA = HB (H là trung điểm AB)

            OH chung

⇒ΔOAH=ΔOBH(c−c−c)⇒ΔOAH=ΔOBH(c−c−c)

b) Ta có: ΔOAH=ΔOBHΔOAH=ΔOBH (chứng minh trên)

⇒∠AOH=∠BOH⇒∠AOH=∠BOH ( 2 góc tương ứng bằng nhau)

Hay ∠AOC=∠BOC∠AOC=∠BOC

Xét ΔOACΔOAC và ΔOBCΔOBC ta có:

      OA = OB (theo giả thiết)

      OC chung

      ∠AOC=∠BOC∠AOC=∠BOC

⇒ΔOAC=ΔOBC(c−g−c)⇒ΔOAC=ΔOBC(c−g−c)

⇒∠OAC=∠OBC⇒∠OAC=∠OBC(2 góc tương ứng)

Mà ∠OAC∠OAC= 900  nên ∠OBC∠OBC = 900

⇒CB⊥OB⇒CB⊥OB( điều phải chứng minh)

c) Ta có: ∠AOC=∠BOC∠AOC=∠BOC (chứng minh trên)                    (1)

Xét 2 tam giác vuông MIO và MIH ta có:

      MI chung

      IO = IH (Vì I là trung điểm của OH)

⇒ΔMIO=ΔMIH⇒ΔMIO=ΔMIH (Cạnh góc vuông – cạnh góc vuông)

⇒∠MOI=∠MHI⇒∠MOI=∠MHI (2 góc tương ứng)

Hay∠AOC=∠MHIHay∠AOC=∠MHI                        (2)

Từ (1) và (2) ta có: ∠BOC=∠MHI∠BOC=∠MHI (cặp góc ở vị trí so le trong)

⇒MH//OB⇒MH//OB                             (*)

Lại có:

HK⊥BCOB⊥BC}⇒HK//OBHK⊥BCOB⊥BC}⇒HK//OB (Quan hệ giữa tính vuông góc và tính song song của ba đường thẳng) (**)

Từ (*) và (**) ta có: MH và HK cùng thuộc một đường thẳng song song với OB.

Suy ra M, H, K thẳng hàng (điều phải chứng minh)

17 tháng 3 2020

x O y A B H C

a) Xét tam giác AHO và tam giác BHO

có OH chung

HA=HB (GT)

OA=OB (GT)

suy ra tam giác AHO = tam giác BHO (c.c.c) (1)

b) Từ (1) suy ra góc AOC = góc BOC

Xét tam giác AOC và tam giác BOC có 

OC chung

góc AOC = góc BOC

OA=OB (GT)

suy ra tam giác AOC = tam giác BOC  (c.g.c)

suy ra góc OAC = góc OBC (hai góc tương ứng)

mà góc OAC =900

suy ra góc OBC = 900

suy ra CB vuông góc với OB tại B

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.a, chứng minh tam giác AOM=tam giác BOMb. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BDc. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Otbài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm...
Đọc tiếp

bài 1 cho Ot là tia phân giác của góc nhọn xOy. trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ot lấy diểm M sao cho OM>OA.

a, chứng minh tam giác AOM=tam giác BOM

b. gọi C là giao điểm tia AM và tia Oy, gọi D là giao điểm của tia BM và tia Ox. chứng minh: Ac=BD

c. nối A và B, vẽ đường thẳng d vuông góc với AB tại A. chứng minh d // Ot

bài 2 cho góc nhọn xOy. lấy điểm A thuộc tia Ox, lấy điểm B thuộc tia Oy sao cho OA=OB. qua A kẻ đường thẳng vuông góc với Ox cắt Oy tại M. qua B kẻ đường thẳng vuông góc với Oy cắt Ox tại N. gọi H là là giao điểm của AM và BN, I là trung của MN.chứng minh rằng 

a. ON=OM và AN=BM

b. tia OH là tia phân giác của góc xOy

c. đường thẳng qua B // AC cắt tia DN tại N

chứng minh: tam giác ABM=tam giác CNM

0
19 tháng 2 2016

Bài này , điều quan trọng nhất là bạn hãy vẽ hình ra nhé

19 tháng 2 2016

bài có sai đề ko pn