K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

11 tháng 11 2016

12x^2(2x - y) - 4xy(2x + y) = 4x(x- y)(y + 6x)

11 tháng 11 2016

\(M=x^2+4x+4+y^2-4y=\left(2x^2+4x+2\right)+\left(y^2-4y+4\right)-2\)

\(=2\left(x+1\right)^2+\left(y-2\right)^2-2\ge-2\)

23 tháng 6 2021

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

23 tháng 6 2021

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

2 tháng 10 2021

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

24 tháng 7 2019

Khó phết chứ chả đùa

24 tháng 7 2019

Bài 1:

1.Đặt \(A=x^2+y^2-3x+2y+3\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+y^2+2y+1+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{9}{4}+2\)

\(=\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\)

Vì \(\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0;\forall x\\\left(y+1\right)^2\ge0;\forall y\end{cases}}\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)

\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\left(y+1\right)^2-\frac{1}{4}\ge0-\frac{1}{4};\forall x,y\)

Hay \(A\ge\frac{-1}{4};\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)

                       \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

VẬY MIN A=\(\frac{-1}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=-1\end{cases}}\)

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 * Bài 2: Tìm...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

15 tháng 8 2021

Giúp mình với ạ,cảm ơn mọi người

b: Ta có: \(B=x^2+4x+9y^2-6y-1\)

\(=x^2+4x+4+9y^2-6y+1-6\)

\(=\left(x+2\right)^2+\left(3y-1\right)^2-6\ge-6\forall x,y\)

Dấu '=' xảy ra khi x=-2 và \(y=\dfrac{1}{3}\)