K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

a) \(C=4x^2+3y^2+4xy-4x-10y+7=\left[4x^2+4x\left(y-1\right)+\left(y-1\right)^2\right]+2\left(y^2-4y+4\right)-2=\left(2x+y-1\right)^2+2\left(y-2\right)^2-2\ge-2\)

\(minC=-2\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=2\end{matrix}\right.\)

d) \(D=x^2-2xy+6y^2-12x+2y+45=\left[x^2-2x\left(y+6\right)+\left(y+6\right)^2\right]+5\left(y^2-2y+1\right)+4=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\ge4\)

\(minD=4\Leftrightarrow\) \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

11 tháng 5 2019

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

12 tháng 5 2019

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

23 tháng 10 2017

ta gọi 

ab=0,5 (a+b)

​​\(x = {-b \pm \sqrt{b^2-4ac} \over 2a} ax+bx=67 kết quả =67\)

a) A= x^2 - 6x + 5

A=x^2-6x+9-4

A=(x-3)^2-4>hoặc= -4

Pmin =-4 <=> x-3=0 <=> x=3

P/s máy mình lag nên ko sủ dụng được cồn thức

13 tháng 8 2018

\(A=x^2-10x+3=\left(x^2-10x+25\right)-22=\left(x-5\right)^2-22\ge-22\)

Vậy GTNN của A là -22 khi x = 5

\(B=x^2+6x-5=\left(x^2+6x+9\right)-14=\left(x+3\right)^2-14\ge-14\)

Vậy GTNN của B là -14 khi x = -3

\(C=x\left(x-3\right)=x^2-3x=\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}\)

Vậy GTNN của C là \(-\dfrac{9}{4}\) khi x = \(\dfrac{3}{2}\)

\(D=x^2+y^2-4x+20=\left(x^2-4x+4\right)+y^2+16=\left(x-2\right)^2+y^2+16\ge16\)

Vậy GTNN của D là 16 khi x = 2; y = 0

\(E=x^2+2y^2-2xy+4x-6y+100\)

\(E=\left(x^2+y^2+4-2xy+4x-4y\right)+\left(y^2-2y+1\right)+95\)

\(E=\left(x-y+2\right)^2+\left(y-1\right)^2+95\ge95\)

Vậy GTNN của E là 95 khi x = -1 ; y = 1

\(F=2x^2+y^2-2xy+4x+100\)

\(F=\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)+96\)

\(F=\left(x-y\right)^2+\left(x+2\right)^2+96\ge96\)

Vậy GTNN của F là 96 khi x = -2; y = -2

13 tháng 8 2018

\(A=-x^2-12x+3=-\left(x^2+12x+36\right)+39=-\left(x+6\right)^2+39\le39\)

Vậy GTLN của A là 39 khi x = -6

\(B=7-4x^2+4x=-\left(4x^2-4x+1\right)+8=-\left(2x-1\right)^2+8\le8\)

Vậy GTLN của B là 8 khi x = \(\dfrac{1}{2}\)

30 tháng 9 2018

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....

6 tháng 11 2016

phân tích đa thức có dạng m2 + n ( n thuộc z)

6 tháng 11 2016

bàn làm giúp mình đk ko ạ!

12 tháng 7 2017

       x2-4x+4=4x2-12x+9

\(\Leftrightarrow\)3x2-8x+5=0

\(\Leftrightarrow\)3x2-3x-5x+5=0

\(\Leftrightarrow\)3x(x-1)-5(x-1)=0

\(\Leftrightarrow\)(x-1)(3x-5)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)

b,x2-2x-25=0

\(\Leftrightarrow\)(x-1)2-26=0

\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)

2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4

b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017

mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory

12 tháng 7 2017

Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3 

13 tháng 7 2017

Bài 1: 

a)  \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)

\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)

VẬy tập nghiệm của phương trình là : S={11/3 ; 7}

b)   Nếu x^2 -2x  =25 thì lẻ lắm . Tớ nghĩ phải là :  x^2 -2x  = 24 

Bài 2 : 

a)  \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)  hay \(A\ge4\)

Vậy GTNN của A là 4  khi x = 1        ( hay x-1 =0 )

b)  \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)

\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)

Vì \(\left(2x-1\right)^2\ge0\)     và \(\left(y+1\right)^2\ge0\)   nên   \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)

HAy \(B\ge-2017\)    Vậy GTNN của B là -2017  khi x=1/2   và y =  -1

10 tháng 7 2016

Bài 1:

  • a,(2+xy)^2=4+4xy+x^2y^2
  • b,(5-3x)^2=25-30x+9x^2
  • d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1