Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác BAD và tam giác BED ta có
AB=AD(gt)
góc B1= góc B2 (tia phân giác)
BD chung
tam giác BAD = tam giác BED (c.g.c)
Suy ra: góc A = góc E ( 2 góc tương ứng )
b) Ta có : góc H =E ( =90 độ)
suy ra : AH//DE ( vì AH và DE cùng vuông với BC)
Còn câu c để mình nghĩ lốt nha
ta có AD = AB - BD = 6 - 4 =2 cm ; \(\dfrac{AD}{AB}=\dfrac{2}{6}=\dfrac{1}{3}\)
a,\(\Delta ABC\) có
\(\dfrac{BD}{AB}=\dfrac{4}{6}=\dfrac{2}{3}\) ; \(\dfrac{CE}{AC}=\dfrac{6}{9}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{CE}{AC}\)
=> DE // BC
\(\Delta ABC\) có DE // BC
\(\Rightarrow\Delta ADE\sim\Delta ABC\) theo \(k=\dfrac{1}{3}\) (1 )
b, \(\Delta ABCcó\) EK // AB
\(\Rightarrow\Delta EKC\sim\Delta ABC\) (2)
từ (1) (2 ) => đpcm
c, EK // AB theo hệ quả định lí ta lét trong \(\Delta ABC\) có
\(\dfrac{EK}{AB}=\dfrac{CE}{AC}hay\dfrac{EK}{6}=\dfrac{6}{9}\Rightarrow EK=4\)
EK // AB theo định lí ta lét trong \(\Delta ABC\) có
\(\dfrac{KC}{BC}=\dfrac{EC}{AC}hay\dfrac{KC}{12}=\dfrac{6}{9}\Rightarrow KC=8\)
\(C_{EKC}=EC+EK+KC=6+4+8=18cm\)
a)Ta có : AB = AC
=> △ ABC cân tại A
Xét △ ABC cân tại A có :
AD là đường trung tuyến
=> AD là đường phân giác
Xét △ ADE vuông tại E và △ ADF vuông tại F có :
AD là cạnh chung
DAEˆ=DAFˆDAE^=DAF^ ( AD là đường phân giác )
Vậy △ ADE = △ ADF (ch-gn)
=> AE = AF ( hai cạnh tương ứng )
=> A nằm trên đường trung trực của EF (1)
Lại có : DE = DF ( △ ADE = △ ADF )
=> D nằm trên đường trung trực của EF (2)
Từ (1), (2) => AD là đường trung trực của EF
Mấy câu sau bạn tự làm nhé