Cho \(\Delta\)ABC , AH ⊥ BC , AC = 20cm, AH = 12cm, BH = 5cm . Tính chu vi của \(\Delta\)ABC
( BẠN NÀO GIẢI CHI TIẾT VÀ NHANH NHẤT MIK SẼ TẶNG CHO BẠN ĐÓ 7 TICK TRONG TUẦN NÀY ! MÀ PHẢI ĐÚNG NHA )
DỰA VÀO ĐỊNH LÝ PY- TA- GO nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(HC=\sqrt{AC^2-AH^2}=16\left(cm\right)\)
BC=BH+HC=21(cm)
\(AB=\sqrt{AH^2+HB^2}=13\left(cm\right)\)
C=AB+BC+AC=13+20+21=54(cm)
Xét tam giác vuông AHB có
AH ^2 + BH ^2 = AB ^2 ( Pytago)
=> AB ^2 = 12^2 + 5^2
=> Ab = 13
Xét tam giác vuông AHC có
AH^2 + HC^2 = AC ^2 ( Pytago)
=> HC^2 = AC^2 - AH^2 = 20^2 -12^2
=> HC =16
BC = HC + BH = 16 + 5 = 21
Chu vi tam giác ABC là AB + AC + BC = 13 + 20 + 21= 54 cm
\(AB^2=AH^2+BH^2\)
\(AB=12^2+5^2=169\)
\(AB=\sqrt{169}=13\left(cm\right)\)
▲AHC vuông tại H ta có:
HC\(^2\)=\(AC^2-AH^2\)=\(20^2-12^2\)=256
\(\)Chu vi ▲ABC là:
AB+BC+AC=AB+BH+HC+AC=\(13+5+16+20=54\left(cm\right)\)
Tham khảo:
Tam giác AHC vuông tại H nên :
AC2 = AH2 + HC2
202 = 122 + HC2
=> HC2 = 202 - 122
HC2 = 400 - 144 = 256 = 162
=> HC = 16 cm
Ta có : BC = HC + HB = 16 + 5 = 21 cm
Tam giác ABH vuông tại H nên :
AB2 = AH2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169 = 132
=> AB = 13 cm
Vậy chu vi tam giác ABC là :
AB + AC + BC = 13 + 20 + 21 = 54 (cm)
Tam giác AHC vuông tại H nên :
AC2 = AH2 + HC2
202 = 122 + HC2
=> HC2 = 202 - 122
HC2 = 400 - 144 = 256 = 162
=> HC = 16 cm
Ta có : BC = HC + HB = 16 + 5 = 21 cm
Tam giác ABH vuông tại H nên :
AB2 = AH2 + HB2
AB2 = 122 + 52
AB2 = 144 + 25 = 169 = 132
=> AB = 13 cm
Vậy chu vi tam giác ABC là :
AB + AC + BC = 13 + 20 + 21 = 54 (cm)
Áp dụng định lý Pytago cho 2 tam giác ABH và ACH ta có AB=13 và HC=16
suy ra chu vi ABC= AC+AB+BH+CH=20+13+5+16=54
Đề phải sửa là Vuông tại A
a/ \(BC^2=AB^2+AC^2=15^2+20^2=625=25^2\Rightarrow BC=25cm\)
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9cm\)
\(HC=BC-BH=25-9=16cm\)
b/ Xét tg vuông ABH có \(\widehat{BAH}+\widehat{ABC}=90^o\) (1)
Xét tg vuông ABC có \(\widehat{ACH}+\widehat{ABC}=90^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACH}=\widehat{BAH}\)
Sửa đề tam giác ABC vuông tại A
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H có
BH2 + AH2 = AB2
=> BH2 + 122 = 152
=> BH2 = 152 - 122
=> BH2 = 81
=> BH = 9
Áp dụng định lý Py-ta-go vào tam giác ACH vuông tại H có
AH2 + HC2 = AC2
=> 122 + HC2 = 202
=> HC2 = 202 - 122
=> HC2 = 256
=> HC = 16
Cho \(\Delta\) nhọn ABC. Kẻ AH vuông với BC.Tính chu vi \(\Delta\)ABC biết, AC = 20cm; AH = 12cm; BH = 5 cm.
Trả lời:
\(\Delta\) ABH vuông tại H, ta có:
AB2 = AH2 + BH2 = 122 + 52 = 169
\(\Rightarrow\) AB = \(\sqrt{169}\) = 13 (cm)
\(\Delta\) AHC vuông tại H, ta có:
HC2 = AC2 - AH2 = 202 - 122 = 256
\(\Rightarrow\) HC= 16 (cm)
Chu vi của \(\Delta\)ABC là:
AB + BC + AC = AB + BH + HC + AC
= 13 + 5 + 16 + 20 = 54 (cm)
vì AH _|_ BC(gt)
=>tg ABH và tg AHC vuông tại H
xét tg AHC vuông tại H:
AC2=AH2+HC2 (đ/l Pytago)
=>HC2=AC2-AH2=202-122=256=162
=>HC=16(cm)
Vì BH+CH=BC( H E BC)
=>BC=5+16=21(cm)
xét tg ABH vuông tại H:
AB2=AH2+BH2 (đ/l Pytago)
=>AB2=122+52=169=132
=>AB=13(cm)
vậy Chu vi của tg ABC=AB+AC+BC=13+20+21=54(cm)
vậy...
nhớ nhé
ab=(12+5).2=34
tam giác abh=12+5+34=51(cm)
=>ch=bh=5cm
=>tam giác abc=20+34+5=59(cm)