CM \(n^5-n\)chia hết cho 5(nthuoc z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6n-5⋮11\)
\(6n+6-11⋮11\)
Mà \(11⋮11\)nên \(6n+6⋮11\)
\(6\left(n+1\right)⋮11\)
Mà (6,11)=1 nên \(n+1⋮11\)
\(\Rightarrow n+1=11k\left(k\inℤ\right)\)
\(\Rightarrow n=11k-1\)
Vậy với \(n=11k-1\left(k\inℤ\right)\)thì \(6n-5⋮11\)
Chúc bạn học tốt
n^5-5*5^3+4*n=(n^5-n^3)-(4n^3-4n)=n^3(n^2-1)-4n(n^2-1)=(n^3-4n)(n^2-1)=n(n^2-4)(n^2-1)=(n-2)(n-1)n(n+1)(n+2)
vì(n-2)(n-1)n(n+1)(n+2)là tích 5 số nguyên liên tiếp nên chia hết cho 3 và 5
Mà (3;5)=1=>(n-2)(n-1)n(n+1)(n+2) chia hết cho 15
vì trong năm số nguyên liên tiếp thì có ít nhất một số chia hết cho 2 và một số chia hết cho 4
=>(n-2)(n-1)n(n+1)(n+2) chia hết cho 8
Mà (8;15)=120
=> (n-2)(n-1)n(n+1)(n+2) chia hết cho 120
hay n^5-5*n^3+4*n
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-\left(6n^2-3n+10n-5\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10\)
\(=2\left(12n+5\right)\) chia hết cho 2
=> \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)chia hết cho 2 (Đpcm)
\(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)
\(=6n^2+30n+n+5-\left(6n^2-3n+10n-5\right)\)
\(=6n^2+31n+5-6n^2-7n+5\)
\(=24n+10\)
\(=2\left(12n+5\right)⋮2\)
\(\Rightarrow\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)⋮2\) ( đpcm )
\(A=\left(n-1\right)\left(n+4\right)-\left(n+1\right)\)
\(A=n^2+3n-4-n-1\)
\(A=n^2+2n-5\)
Giả sử n = 1 thì A không chia hết cho 6 nên đề bài vô lí
n5-n
<=>n(n4-1)
<=>n(n2-1)(n2+1)
<=>(n-1)n(n+1)(n2-4+5)
<=>(n-1)n(n+1)(n-2)(n+2)+5n(n2-1)
Vì (n-1)n(n+1)(n-2)(n+2) là 5 số tự nhiên liên tiếp nên chia hết cho 5 và 5n(n2-1) chia hết cho 5
Nên n5-n chia hết cho 5