Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy :
27 chia hết cho 3
6n = 3.2.n chia hết cho 2.n
Vậy n = 0; 1; 2; 3; 4; 5; 6; ... hay n = mọi số tự nhiên .
b) 2n + 5 chia hết cho 3n + 1
2n + 4 + 1 chia hết cho 2n + n + 1
Vì 2n + 1 chia hết cho 2n + 1 nên 4 chia hết cho n
Ư(4) = 1; 2; 4
Vậy n = 1; 2; 4
Cấm COPY
\(4n-5⋮2n-1\)
\(\Leftrightarrow4n-2-3⋮2n-1\)
\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)
\(\Leftrightarrow-3⋮2n-1\)
\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)
\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)
mà \(n\in N\)
\(\Rightarrow n\in\left\{0;1;2\right\}\)
\(6n+9⋮3n+1\)
\(\Leftrightarrow6n+2+7⋮3n+1\)
\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)
\(\Leftrightarrow7⋮3n+1\)
\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)
\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)
mà \(n\in N\)
=> \(n\in\left\{0;2\right\}\)
Ta có: 3n+11 chia hết cho 7-2n => 2(3n+11) chia hết cho 7-2n => 6n+22 chia hết cho 7-2n
7-2n chia hết cho 7-2n => 3(7-2n) chia hết cho 7-2n => 21-6n chia hết cho 7-2n
=> 6n+22+(21-6n) chia hết cho 7-2n
=> 43 chia hết cho 7-2n
=> 7-2n thuộc Ư(43)={1;-1;43;-43}
=> 2n thuộc {6;8;-36;50}
=> n thuộc {3;4;-18;25}
2n + 1 chia hết cho n - 3
Ta có: 2n + 1 = 2( n - 3) + 7
Để 2n +1 chia hết cho n -3 thì 7 chia hết cho n - 3
=> n - 3 thuộc Ư(7) = { 1;-1;7;-7 }
=> n thuộc { 4;3;10;-4 }
6n+4 chia hết cho 2n+1
Ta có: 6n+4=3(2n+1)+1
Để 6n+4 chia hết cho 2n+1 thì 1 chia hết cho 2n + 1
=> 2n+1 thuộc Ư( 1)={1;-1}
=> n thuộc {0; -1}
6n + 8 chia hết cho n - 1
⇒ 6n - 6 + 14 chia hết cho n - 1
⇒ 6(n - 1) + 14 chia hết cho n - 1
⇒ 14 chia hết cho n - 1
⇒ n - 1 ∈ Ư(14)
⇒ n - 1 ∈ {1; -1; 2; -2; 7; -7; 14; -14}
⇒ n ∈ {2; 0; 3; -1; 8; -6; 15; -13}
Mà: n ∈ N nên:
⇒ n ∈ {2; 0; 3; 8; 15}
6n + 8 chia hết cho n - 1
⇒ 6n - 6 + 14 chia hết cho n - 1
⇒ 6(n - 1) + 14 chia hết cho n - 1
⇒ 14 chia hết cho n - 1
⇒ n - 1 ∈ Ư(14)
⇒ n - 1 ∈ {1; -1; 2; -2; 7; -7; 14; -14}
⇒ n ∈ {2; 0; 3; -1; 8; -6; 15; -13}
Mà: n ∈ N nên:
⇒ n ∈ {2; 0; 3; 8; 15}
\(6n-5⋮11\)
\(6n+6-11⋮11\)
Mà \(11⋮11\)nên \(6n+6⋮11\)
\(6\left(n+1\right)⋮11\)
Mà (6,11)=1 nên \(n+1⋮11\)
\(\Rightarrow n+1=11k\left(k\inℤ\right)\)
\(\Rightarrow n=11k-1\)
Vậy với \(n=11k-1\left(k\inℤ\right)\)thì \(6n-5⋮11\)
Chúc bạn học tốt