Tổng hiệu sau có chia hết cho 2,3,5,9 hay ko?
a, 10 mũ 2001 + 2
b, 10 mũ 2021 - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=10^{12}+1\)
\(B=10^{12}+2\)
\(C=10^{12}+7\)
\(D=10^{12}+8\)
\(\Rightarrow A+B+C+D=4.10^{12}+\left(1+2+7+8\right)=4.10^{12}+18\)
Tổng các chữ số của tổng này là \(1+1+8=10\) không chia hết cho 3 nên không chia hết cho 9
Vậy \(A+B+C+D⋮̸\left(3;9\right)\)
A có tổng các chữ số là 2 nên A không chia hết cho 3 và 9
B có tổng các chữ số là 3 nên B chia hết cho 3 mà không chia hết cho 9
C có tổng các chữ số là 8 nên không chia hết cho 3 và 9
D có tổng các chữ số là 9 nên chia hết cho cả 3 và 9
a) 1012 - 1 = 1000...0 - 1 = 999...9
(12 c/s 0) (12 c/s 9)
Tổng các chữ số của 1012 - 1 là: 9 x 12 chia hết cho 9
Mà 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9
=> 1012 - 1 chia hết cho 9
Lại có: 9 chia hết cho 3
=> 1012 - 1 chia hết cho 3 và 9
b) 1010 + 2 = 1000...0 + 2 = 1000...02
(10 c/s 0) (9 c/s 0)
Tổng các chữ số của 1010 + 2 là: 1 + 0 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho 3 nhưng không chia hết cho 9
(9 số 0)
Mà 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 và 9
=> 1010 + 2 chia hết cho 3 nhưng không chia hết cho 9
\(A=10^{37}-1\)
Mà: \(10^{37}=\overline{10...0}\) (37 số 0)
\(\Rightarrow A=10^{37}-1=\overline{10...0}-1=\overline{99...9}\)
Nên A chia hết cho 9 mà A chia hết cho 9 thì A chia hết cho 3
____________
\(A=10^{14}+2\)
Mà: \(10^{14}=\overline{10...0}\) (14 số 0)
\(\Rightarrow A=10^{14}+2=\overline{10...0}+2=\overline{10...2}\)
Tổng các chữ số là: 1 + 0 + ...+ 0 + 2 = 3
Nên A chia hết cho 3 không chia hết cho 9
Bài 2
a)Ta có:\(2001^{2002}+2002^{2003}\)
=\(\left(.....1\right)+2002^{2000}.2002^3\)
=\(\left(.....1\right)+\left(....6\right).\left(.....8\right)\)
=\(\left(.....9\right)\)không chia hết cho 2
b)Ta có:\(861^7+972^2\)
=\(\left(.....1\right)+\left(......4\right)\)
=\(\left(......5\right)\)chia hết cho 5
Bài 4:
a chia 11 dư 5 dạng tổng quát của a là:
\(a=11k+5\left(k\in N\right)\)
b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)
Nên: \(a+b\)
\(=11k+5+11k+6\)
\(=\left(11k+11k\right)+\left(5+6\right)\)
\(=k\cdot\left(11+11\right)+11\)
\(=22k+11\)
\(=11\cdot\left(2k+1\right)\)
Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11
\(\Rightarrow a+b\) ⋮ 11
Bài 1: Mình làm rồi nhé !
Bài 2:
a) Dạng tổng quát của A là:
\(a=36k+24\left(k\in N\right)\)
b) a chia hết cho 6 vì:
Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6
\(\Rightarrow a=36k+24\) ⋮ 6
c) a không chia hết cho 9 vì:
Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9
\(\Rightarrow a=36k+24\) không chia hết cho 9
a,chia hết cho 2,3
không chia hết cho 5,9
b,chia hết cho 3,9
không chia hết cho 2,5
a: A=10^2021+2=10...02
A có chữ số tận cùng là 2 nên A chia hết cho 2; ko chia hết cho 5
Vì A có tổng các chữ số là 1+0+...+0+2=3 nên A chia hết cho 3 và ko chia hết cho 9
b: B=10^2021-1=9...9(2021 chữ số 9)
Tổng các chữ số là 9*2021=18189
=>B chia hết cho 9;3
B ko chia hết cho 2 và 5
A = 2 + 22 + 23 + 24 + ... + 29 + 210 (có 10 số; 10 chia hết cho 2)
A = (2 + 22) + (23 + 24) + ... + (29 + 210)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 29.(1 + 2)
A = 2.3 + 23.3 + ... + 29.3
A = 3.(2 + 23 + ... + 29) chia hết cho 3
a: Tổng này chia hết cho 2, 3 và không chia hết cho 5,9
bạn có thể giải thích hộ mình ko ạ?