K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

1)           P = 2/3.5 + 2/5.7 + 2/7.9 + 2/9.11 + 2/11.13 + 2/13.15

              P= (1/3-1/5) + (1/5-1/7) + (1/7-1/9) + (1/9-1/11) + (1/11-1/13) + (1/13-1/15)

              P=1/3-1/15= 4/15

2) a/ 0,2:1+3/5+80%

= 2/10:8/5+8/10

= 2/10.5/8+8/10

= 1/8 + 4/5 = 5/40 + 32/40 = 37/40

    b/ 0,5:5/4-2+1/5

= 5/10:5/4-11/5

= 5/10.4/5-11/5

=2/5-11/5 = -9/5

\(-\frac{2}{1.3}-\frac{2}{3.5}-\frac{2}{5.7}-\frac{2}{7.9}-\frac{2}{9.11}-\frac{2}{11.13}-\frac{2}{13.15}\)

\(=\left(-\frac{2}{1.3}\right)+\left(-\frac{2}{3.5}\right)+\left(-\frac{2}{5.7}\right)+\left(-\frac{2}{7.9}\right)+\left(-\frac{2}{9.11}\right)+\left(-\frac{2}{11.13}\right)+\left(-\frac{2}{13.15}\right)\)

\(=\left(-2\right).\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}+\frac{1}{13.15}\right)\)

\(=\left(-2\right).\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\right)\)

\(=\left(-2\right).\left(1-\frac{1}{15}\right)=\left(-2\right).\frac{14}{15}\)

\(=-\frac{28}{15}\)

6 tháng 3 2016

tks bạn nha ^_^ Miu Ti

30 tháng 3 2016

a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)

=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)

=\(\frac{1}{3}-\frac{1}{13}\)

=\(\frac{10}{39}\)

b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)

3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)

3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)

3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)

3A=\(\frac{1}{6}-\frac{1}{24360}\)

3A=\(\frac{1353}{8120}\)

A=\(\frac{451}{8120}\)

d) Ta có: \(x+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{41\cdot45}=\dfrac{-37}{45}\)

\(\Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{41}-\dfrac{1}{45}=\dfrac{-37}{45}\)

\(\Leftrightarrow x+\dfrac{1}{5}-\dfrac{1}{45}=\dfrac{-37}{45}\)

\(\Leftrightarrow x=\dfrac{-37}{45}+\dfrac{1}{45}-\dfrac{1}{5}=\dfrac{-36}{45}-\dfrac{1}{5}=\dfrac{-4}{5}-\dfrac{1}{5}=-1\)

Vậy: x=-1

22 tháng 7 2021

Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)

Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{1}{15}\)

\(=\dfrac{4}{15}\)

21 tháng 9

Bài 1:

a; (\(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\)) x \(\dfrac{3}{4}\) = \(\dfrac{1}{4}\)

     \(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) : \(\dfrac{3}{4}\)

      \(\dfrac{1}{4}\)\(x\) - \(\dfrac{1}{8}\) = \(\dfrac{1}{4}\) x \(\dfrac{4}{3}\)

    \(\dfrac{1}{4}x\) - \(\dfrac{1}{8}\) =  \(\dfrac{1}{3}\)

      \(\dfrac{1}{4}x\) = \(\dfrac{1}{3}\) + \(\dfrac{1}{8}\)

       \(\dfrac{1}{4}\) \(x\)=  \(\dfrac{8}{24}\) + \(\dfrac{11}{24}\)

          \(\dfrac{1}{4}x=\dfrac{11}{24}\)

           \(x=\dfrac{11}{24}:\dfrac{1}{4}\)

           \(x=\dfrac{11}{24}\times4\)

           \(x=\dfrac{11}{6}\) 

   

21 tháng 9

b; \(\dfrac{12}{5}:x\) = \(\dfrac{14}{3}\) x \(\dfrac{4}{7}\)

     \(\dfrac{12}{5}\) : \(x\) = \(\dfrac{8}{3}\)

            \(x\) = \(\dfrac{12}{5}\) : \(\dfrac{8}{3}\)

            \(x\) = \(\dfrac{12}{5}\) x \(\dfrac{3}{8}\)

             \(x\) = \(\dfrac{9}{10}\)

 

5 tháng 8 2018

Ta có: \(B=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{3}-\frac{1}{8}\)

\(=\frac{5}{24}\)

Vậy \(B=\frac{5}{24}\)

5 tháng 8 2018

Ta có: \(C=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{4}-\frac{1}{9}\)

\(=\frac{5}{36}\)

Vậy \(C=\frac{5}{36}\)

`@` `\text {Ans}`

`\downarrow`

`a.`

\(0,3-\dfrac{4}{9}\div\dfrac{4}{3}\cdot\dfrac{6}{5}+1\)

`=`\(0,3-\dfrac{1}{3}\cdot\dfrac{6}{5}+1\)

`=`\(0,3-0,4+1\)

`= -0,1 + 1`

`= 0,9`

`b.`

\(1+2\div\left(\dfrac{2}{3}-\dfrac{1}{6}\right)\cdot\left(-2,25\right)\)

`=`\(1+2\div\dfrac{1}{2}\cdot\left(-2,25\right)\)

`=`\(1+4\cdot\left(-2,25\right)\)

`= 1+ (-9) = -8`

`c.`

\(\left[\left(\dfrac{1}{4}-0,5\right)\cdot2+\dfrac{8}{3}\right]\div2\)

`=`\(\left(-\dfrac{1}{4}\cdot2+\dfrac{8}{3}\right)\div2\)

`=`\(\left(-\dfrac{1}{2}+\dfrac{8}{3}\right)\div2\)

`=`\(\dfrac{13}{6}\div2\)

`=`\(\dfrac{13}{12}\)

`d.`

\(\left[\left(\dfrac{3}{8}-\dfrac{5}{12}\right)\cdot6+\dfrac{1}{3}\right]\cdot4\)

`=`\(\left(-\dfrac{1}{24}\cdot6+\dfrac{1}{3}\right)\cdot4\)

`=`\(\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\cdot4\)

`=`\(\dfrac{1}{12}\cdot4=\dfrac{1}{3}\)

`e.`

\(\left(\dfrac{4}{5}-1\right)\div\dfrac{3}{5}-\dfrac{2}{3}\cdot0,5\)

`=`\(-\dfrac{1}{5}\div\dfrac{3}{5}-\dfrac{1}{3}\)

`=`\(-\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{2}{3}\)

`f.`

\(0,8\div\left\{0,2-7\left[\dfrac{1}{6}+\left(\dfrac{5}{21}-\dfrac{5}{14}\right)\right]\right\}\)

`=`\(0,8\div\left[0,2-7\left(\dfrac{1}{6}-\dfrac{5}{42}\right)\right]\)

`=`\(0,8\div\left(0,2-7\cdot\dfrac{1}{21}\right)\)

`=`\(0,8\div\left(0,2-\dfrac{1}{3}\right)\)

`= 0,8 \div (-2/15)`

`=-6`

`@` `yHGiangg.`

27 tháng 8 2015

Mik giải phía dưới rồi đó. Câu lúc nãy bạn đăng ý

2 tháng 5 2016

A = \(\frac{5}{1.2}\) + \(\frac{5}{2.3}\) +........+\(\frac{5}{99.100}\) 

A = 5.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +......+\(\frac{1}{99.100}\) )

A = 5. ( \(\frac{1}{1}\) - \(\frac{1}{2}\) +\(\frac{1}{2}-\frac{1}{3}\) +......+\(\frac{1}{99}-\frac{1}{100}\) )

A= 5. (\(1-\frac{1}{100}\))

A= 5.\(\frac{99}{100}\)

A= \(\frac{99}{20}\)

23 tháng 3 2017

B = \(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+............+ \(\frac{1}{9.10}\)

    = \(\frac{1}{2}\)-  \(\frac{1}{3}\)+\(\frac{1}{3}\)-   \(\frac{1}{4}\)+ ...................+\(\frac{1}{9}\)-     \(\frac{1}{10}\)

    =  \(\frac{1}{2}\) -     \(\frac{1}{10}\)

     =       \(\frac{2}{5}\)