Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: 1/1.2.3 - 1/2.3.4 = 3/1.2.3.4, 1/2.3.4 - 1/3.4.5 =3/2.3.4.5,...,1/27.28.29 - 1/28.29.30
Gọi biểu thức phải tính bằng A,ta tính được:
3A=1/2.3 - 1/28.29.30 = 4059/28.29.30
vậy A = 1353/8120
\(\text{Ta có:}\) \(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}\)
\(\Leftrightarrow2.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right).x=\frac{2}{3}.2\)
\(\Leftrightarrow\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right).x=\frac{4}{3}\)
\(\Leftrightarrow\left(1-\frac{1}{11}\right)x=\frac{4}{3}\)
\(\Leftrightarrow\frac{10}{11}x=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{4}{3}:\frac{10}{11}=\frac{22}{15}\)
Đặt \(A=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)
Ta có:
\(3A=\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{27.28.29.30}\)
\(\Rightarrow3A=\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+...+\dfrac{1}{27.28.29}-\dfrac{1}{28.29.30}\)
\(\Rightarrow3A=\dfrac{1}{1.2.3}-\dfrac{1}{28.29.30}\)
\(\Rightarrow3A=\dfrac{1}{6}-\dfrac{1}{24360}\)
\(\Rightarrow3A=\dfrac{1353}{8120}\)
\(\Rightarrow A=\dfrac{1353}{\dfrac{8120}{3}}=\dfrac{451}{8120}\)
Vậy \(A=\dfrac{451}{8120}\)
a) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{100-98}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+...+\frac{100}{98.99.100}-\frac{98}{98.99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(=\frac{1}{4}-\frac{1}{19800}=\frac{4949}{19800}\)
b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)
\(=\frac{1}{3}(\frac{4-1}{1.2.3.4}+\frac{5-2}{2.3.4.5}+...+\frac{30-27}{27.28.29.30})\)
\(=\frac{1}{3}(\frac{4}{1.2.3.4}-\frac{1}{1.2.3.4}+\frac{5}{2.3.4.5}-\frac{2}{2.3.4.5}+...+\frac{30}{27.28.29.30}-\frac{27}{27.28.29.30})\)
\(=\frac{1}{3}(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30})\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{6}-\frac{1}{24360}\right)\)
\(=\frac{1}{3}.\frac{1353}{8120}\)
\(=\frac{451}{8120}\)
Ta có \(A=\dfrac{2}{1.3}-\dfrac{2}{2.4}+\dfrac{2}{3.5}-\dfrac{2}{4.6}+\dfrac{2}{5.7}-\dfrac{2}{6.8}+\dfrac{2}{7.9}-\dfrac{2}{8.10}+\dfrac{2}{9.11}-\dfrac{2}{10.12}\)
\(\Rightarrow A=\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)-\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+\dfrac{2}{8.10}+\dfrac{2}{10.12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{12}\right)\) \(\Rightarrow A=\left(1-\dfrac{1}{11}\right)-\left(\dfrac{1}{2}-\dfrac{1}{12}\right)\)
\(\Rightarrow A=1-\dfrac{1}{11}-\dfrac{1}{2}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{9}{22}+\dfrac{1}{12}\)
\(\Rightarrow A=\dfrac{65}{132}\)
Mà \(\dfrac{65}{132}< 1\) \(\Rightarrow A< 1\)
Vậy \(A< 1\)
a) \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{27.28}-\frac{1}{28.29}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{28.29}\right)\)
\(=\frac{1}{2}.\frac{405}{812}=\frac{405}{1624}\)
Vậy giá trị của biểu thức \(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{27.28.29}=\frac{405}{1624}\)
b) \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+\frac{1}{3.4.5}-\frac{1}{4.5.6}+....+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\cdot\frac{1353}{8120}=\frac{451}{8120}\)
Vậy giá trị của biểu thức \(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+...+\frac{1}{27.28.29.30}=\frac{451}{8120}\)
Đặt A=\(\dfrac{2}{3.5}.\dfrac{2}{7.9}.....\dfrac{2}{99.101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
A=\(\dfrac{1}{3}-\dfrac{1}{101}=\dfrac{98}{303}\)
Ta có: \(P=\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}\)
\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{13}-\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{1}{15}\)
\(=\dfrac{4}{15}\)
a,\(\frac{2}{3.5}+\frac{2}{5.7}+.......+\frac{2}{11.13}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.............+\frac{1}{11}-\frac{1}{13}\)
=\(\frac{1}{3}-\frac{1}{13}\)
=\(\frac{10}{39}\)
b,Đặt A=\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+.............+\frac{1}{27.28.29.30}\)
3A=\(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...........+\frac{3}{27.28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+.............+\frac{1}{27.28.29}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{1.2.3}-\frac{1}{28.29.30}\)
3A=\(\frac{1}{6}-\frac{1}{24360}\)
3A=\(\frac{1353}{8120}\)
A=\(\frac{451}{8120}\)