cho tam giác ABC cho biết BA=BC .Gọi 0 là điểmAC
1.Chứng minh rằng tam giác BOA=tam giác BOC
2.Chứng minh A=C và ABO=CBO
3.Chứng minh rằng OB đối AC
4. Trên tia BO lấy Dsao cho O là trung điểm BD chứng minh AD song song BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ OB = OD (gt).
+ OA = OC (gt).
+ ^AOB = ^COD (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do OA = OC).
+ O là trung điểm của BD (do OB = OD).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do OA = OC).
=> MO là đường trung bình.
=> MO // BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do OB = OD).
=> NO là đường trung bình.
=> NO // BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng (đpcm).
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ \(\text{OB = OD}\) (gt).
+ \(\text{OA = OC }\)(gt).
+ \(\widehat{AOB}\) = \(\widehat{COD}\) (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do \(\text{OA = OC}\)).
+ O là trung điểm của BD (do \(\text{OB = OD}\)).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do \(\text{OA = OC}\)).
=> MO là đường trung bình.
=> MO // BC và MO = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do \(\text{OB = OD}\)).
=> NO là đường trung bình.
=> NO // BC và NO = \(\dfrac{1}{2}\) BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng và MO = NO (do cùng = \(\dfrac{1}{2}\) BC).
=> O là trung điểm của MN (đpcm).
a) Xét tam giác tam giác ABO và tam giác CDO có:
+ OB = ODOB = OD (gt).
+ OA = OC OA = OC (gt).
+ ˆAOB���^ = ˆCOD���^ (2 góc đối đỉnh).
=> Tam giác ABO = Tam giác CDO (c - g - c).
b) Xét tứ giác ABCD có:
+ O là trung điểm của AC (do OA = OCOA = OC).
+ O là trung điểm của BD (do OB = ODOB = OD).
=> Tứ giác ABCD là hình bình hành (dhnb).
=> AB // CD (Tính chất hình bình hành).
c) Xét tam giác ABC có:
+ M là trung điểm của AB (gt).
+ O là trung điểm của AC (do OA = OCOA = OC).
=> MO là đường trung bình.
=> MO // BC và MO = 1212 BC (Tính chất đường trung bình trong tam giác). (1)
Xét tam giác BDC có:
+ N là trung điểm của CD (gt).
+ O là trung điểm của BD (do OB = ODOB = OD).
=> NO là đường trung bình.
=> NO // BC và NO = 1212 BC (Tính chất đường trung bình trong tam giác). (2)
Từ (1) và (2) => 3 điểm M; O; N thẳng hàng và MO = NO (do cùng = 1212 BC).
=> O là trung điểm của MN (đpcm).
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm