a-0+0=...?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.
Tọa độ điểm \(G\) là \(G\left(\dfrac{6+0+0}{3},\dfrac{0+4+0}{3},\dfrac{0+0+3}{3}\right)\) suy ra \(G\left(2,\dfrac{4}{3},1\right)\).
\(\overrightarrow{AB}=\left(-2,3,0\right),\overrightarrow{BC}=\left(0,-3,4\right),\overrightarrow{CA}=\left(2,0,-4\right)\)
Đặt \(H\left(a,b,c\right)\).
Vì \(H\) là trực tâm tam giác \(ABC\) nên
\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{CA}=0\\\left[\overrightarrow{AB},\overrightarrow{AC}\right].\overrightarrow{AH}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3b+4c=0\\2a-4c=0\\12\left(a-2\right)+8b+6c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{72}{61}\\b=\dfrac{48}{61}\\c=\dfrac{36}{61}\end{matrix}\right.\) suy ra \(H\left(\dfrac{72}{61},\dfrac{48}{61},\dfrac{36}{61}\right)\).
\(\overrightarrow{OG}=\left(2,\dfrac{4}{3},1\right)\)
Đường thẳng qua OG: \(\left\{{}\begin{matrix}x=2t\\y=\dfrac{4}{3}t\\z=t\end{matrix}\right.\).
Bằng cách thử trực tiếp, ta thấy H nằm trên đường thẳng OG.
a) thì b>0
b) thì b < 0
c)a>0,b<0, b<0,a>0 hoặc a,b=0
d) thì a>b hoặc a,b=0
e) thì a>b>=0
g)thì a=0 hoặc b =0
h)b<0
i)b>0
a) Nếu \(a+b>0\) và \(a< 0\) thì \(b>\left|a\right|\)
b) Nếu \(a+b< 0\) và \(a>0\) thì \(\left|b\right|>a\)
c) Nếu \(a+b=0\) thì a và b là 2 số đối nhau
d) Nếu \(a-b=0\) thì \(a=b\)
e) Nếu \(a-b>0\) thì \(a>b\)
g) Nếu \(ab=0\) thì \(a=0\) hoặc \(b=0\)
h) Nếu \(ab>0\) và \(a< 0\) thì \(b< 0\)
i) Nếu \(ab< 0\) và \(a< 0\) thì \(b>0\)
a) thì b> /a/
b) thì b<-a
c) thì a=0;b=0 hoặc a và b đối nhau
d) thì a=b
tích .........
- Chọn C.
- Vì vật nhận nhiệt thì Q > 0, vật sinh công thì A < 0.
0 – 7 = 0 + (–7) = –7;
7 – 0 = 7 + 0 = 7;
a – 0 = a + 0 = a;
0 – a = 0 + (–a) = –a.
=0 bạn nhé
0 bạn ơiiiiiiiiiiiiiiiiiiiiiii