K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2016

Gọi d thuộc ƯC(\(\frac{n\left(n+1\right)}{2}\),2n+1) thì n(n+1) chia hết cho d và 2n+1 chia hết cho d.

=>n(2n+1) - n(n+1)chia hết cho d

<=>2\(n^2\)+n - \(n^2\)-n chia hết cho d

<=> \(n^2\)chia hết cho d

Từ n(n+1) chia hết cho d và \(n^2\) chia hết cho d => n chia hết cho d

Ta lại có 2n+1 chia hết cho d

=> 1 chia hết cho d => d=1

Vậy 2 số đó là 2 số nguyen tố

16 tháng 6 2016

Gọi d là ƯCLN( \(\frac{n\left(n+1\right)}{2}\), 2n+1) ( d thuộc N*)

Khi đó \(\frac{n\left(n+1\right)}{2}\) chia hết cho d và  2n+1 chia hết cho d

<=> n(n+1) chia hết cho d và  2n+1 chia hết cho d

<=> n+ n chia hết cho d và n(2n+1) chia hết cho d

<=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d

=> (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d \(\in\) N => d=1

Vậy \(\frac{n\left(n+1\right)}{2}\) và 2n+1 nguyên tố cùng nhau với mọi n \(\in\) N

16 tháng 6 2016

Gọi d = ƯCLN( n(n+1)/2, 2n+1) ( d thuộc N*)

=> n(n+1)/2 chia hết cho d, 2n+1 chia hết cho d

=> n(n+1) chia hết cho d, 2n+1 chia hết cho d

=> n2+n chia hết cho d, n(2n+1) chia hết cho d

=> n2+n chia hết cho d, 2n2+n chia hết cho d

=> (2n2+n) - (n2+n) chia hết cho d

=> 2n2+n-n2-n chia hết cho d

=> n2 chia hết cho d

Mà n2+n chia hết cho d => (n2+n)-n2 chia hết cho d 

=> n chia hết cho d

=> 2n chia hết cho d

Mà 2n+1 chia hết cho d => (2n+1)-2n chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N => d=1

=> ƯCLN( n(n+1)/2, 2n+1)=1

Chứng tỏ n(n+1)/2 và 2n+1 nguyên tố cùng nhau với mọi n thuộc N

AH
Akai Haruma
Giáo viên
23 tháng 7 2021

Lời giải:

Gọi $d$ là ƯCLN của $2n+1$ và $2n+2$

\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ 2n+2\vdots d\end{matrix}\right.\Rightarrow (2n+2)-(2n+1)\vdots d\) hay $1\vdots d$

$\Rightarrow d=1$

Vậy ƯCLN của $2n+1, 2n+2$ là $1$ nên $2n+1, 2n+2$ nguyên tố cùng nhau.

 

4 tháng 4 2016

ban vao cho cau hoi cua tran thi y do !

cau hoi giong cua ban !tk mk nhe !

5 tháng 4 2016

cam on nhe de minh k cho

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

15 tháng 11 2017

Mọi người ơi trả lời hộ mình câu 3 nhé. cám ơn nhiều