Cho ΔABC, trung tuyến AD. Gọi G là trọng tâm của ΔABC. Đường thẳng d qua G cắt các cạnh AB, AC lần lượt tại M, N.
C/m:
a) \(\dfrac{AB}{AM}\) + \(\dfrac{AC}{AN}\) = 3
b) \(\dfrac{BM}{AM}\) + \(\dfrac{CN}{AN}\) = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do trắc nghiệm nên ta chỉ cần xét trường hợp đặc biệt nhất: đường thẳng này đi qua B, khi đó M trùng B và N là trung điểm AC
\(\Rightarrow\overrightarrow{AM}.\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AC}\)
Đồng thời do \(\overrightarrow{MB}=\overrightarrow{0}\) và \(\overrightarrow{NC}=\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\) nên đáp án D đúng
a: Xét ΔMAB có ME là phân giác
nên \(\dfrac{AE}{EB}=\dfrac{AM}{MB}=\dfrac{AM}{MC}\left(1\right)\)
Xét ΔAMC có MD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{AM}{MC}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
Xét ΔABC có \(\dfrac{AE}{EB}=\dfrac{AD}{DC}\)
nên ED//BC
b: Xét ΔABM có EI//BM
nên \(\dfrac{EI}{BM}=\dfrac{AI}{AM}\left(3\right)\)
Xét ΔAMC có ID//MC
nên \(\dfrac{ID}{MC}=\dfrac{AI}{AM}\left(4\right)\)
Từ (3) và (4) suy ra \(\dfrac{EI}{BM}=\dfrac{ID}{MC}\)
mà BM=MC
nên EI=ID
Ta có: ID//MC
=>\(\widehat{IDM}=\widehat{MDC}\)(hai góc so le trong)
mà \(\widehat{MDC}=\widehat{IMD}\)(MD là phân giác của góc IMC)
nên \(\widehat{IDM}=\widehat{IMD}\)
=>IM=ID
câu trả lời tại đây
https://olm.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+c%C3%B3+G+l%C3%A0+tr%E1%BB%8Dng+t%C3%A2m.+Qua+G+v%E1%BA%BD+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+d+c%E1%BA%AFt+hai+c%E1%BA%A1nh+AB+v%C3%A0+AC+t%E1%BA%A1i+D+v%C3%A0+E.+Ch%E1%BB%A9ng+minh:+AB/AD=AC/AE=3&id=516183