K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

n^3 + 20n = n^3 - 4n + 24n 
n^3 + 20n = n.(n² - 4) + 24n 
n^3 + 20n = n.(n - 2).(n+2) + 24n 
n = 2k 
=> n^3 + 20n = 8k.(k - 1).(k+1) + 48k 
ta có: k.(k-1).(k+1) là tích 3 stn liên tiếp => chia hết cho 2.3 = 6 
=> 8k.(k - 1).(k+1) chia hết 8.6 = 48 => n^3 +20n chia hết cho 48.

 

11 tháng 2 2016

minh moi hok lop 6

25 tháng 2 2017

3n+2-2n+2+3n-2n

=(3n+2+3n)-(2n+2+2n)

=3n(32+1)-2n(22+1)

=3n.10-2n.5

=3n.10-2n-1.10

=10(3n-2n-1)chia hết cho 10

25 tháng 2 2017

k lại cho mình đi

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

27 tháng 12 2023

\(a^3+6a^2+8=a\left(a^2+6a+9-1\right)=\)

\(=a\left[\left(a+3\right)^2-1\right]=a\left(a+3-1\right)\left(a+3+1\right)=\)

\(=a\left(a+2\right)\left(a+4\right)\)

Đây là tích của 3 số chẵn liên tiếp đặt \(a=2k\)

\(\Rightarrow a\left(a+2\right)\left(a+4\right)=2k\left(2k+2\right)\left(2k+4\right)=\)

\(=8k\left(k+1\right)\left(k+2\right)=A\)

Ta thấy

\(k\left(k+1\right)\) chẵn đặt \(k\left(k+1\right)=2p\)

\(\Rightarrow A=16p\left(k+2\right)⋮16\) (1)

Ta thấy \(k\left(k+1\right)\left(k+2\right)⋮3\) (2) (Tích của 3 số TN liên tiếp)

Từ (1) và (2)

\(\Rightarrow A⋮16x3\Rightarrow A⋮48\) vì \(\left(16,3\right)=1\)

26 tháng 10 2021

cho tam giác abc vuông tại a có ab=9cm , ac=12cm.gọi M, N lần lượt là trung điểm của ab,ac

a) tính độ dài mn

b)hỏi tứ giác BMNC là hình j ?vì sao?

26 tháng 10 2021

CHỈ GIÚP VS Ạ

 

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

2 tháng 1 2018

Ta có n là số tự nhiên nên n có 2 dạng : 2k hoặc 2k+1 (k\(\in\)N)

+Th1: n = 2k

\(\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)=2\left(2k+3\right)\left(k+3\right)⋮2\)

+Th2: n=2k+1

\(\left(n+3\right)\left(n+6\right)=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)⋮2\)

Vậy với\(\forall n\in N\)thì tích (n+3)(n+6) chia hết cho 2