Giải các bpt sau:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e, ĐK: \(x\ne2\)
\(\dfrac{3}{x-2}>1\Leftrightarrow\dfrac{5-x}{x-2}>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-x>0\\x-2>0\end{matrix}\right.\left(1\right)\) hoặc \(\left\{{}\begin{matrix}5-x< 0\\x-2< 0\end{matrix}\right.\left(2\right)\)
\(\left(1\right)\Leftrightarrow2< x< 5\)
\(\left(2\right)\Leftrightarrow\) vô nghiệm
Vậy \(2< x< 5\)
f, ĐK: \(x\ne\dfrac{1}{2}\)
\(\dfrac{2x^2+x}{1-2x}\ge1-x\)
\(\Leftrightarrow\dfrac{2x^2+x+\left(x-1\right)\left(1-2x\right)}{\left(1-2x\right)\left(x-1\right)}\ge0\)
\(\Leftrightarrow\dfrac{4x-1}{\left(1-2x\right)\left(x-1\right)}\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-1\ge0\\\left(1-2x\right)\left(x-1\right)>0\end{matrix}\right.\left(1\right)\) hoặc \(\left\{{}\begin{matrix}4x-1\le0\\\left(1-2x\right)\left(x-1\right)< 0\end{matrix}\right.\left(2\right)\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{4}\\\dfrac{1}{2}< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< x< 1\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{4}\)
Vậy ...
\(\dfrac{x+1}{x+2}-\dfrac{5}{x-2}=\dfrac{20}{4-x^2}\) (\(ĐK:x\)≠\(2;-2\))
⇔ \(\dfrac{\left(x+1\right)\left(x-2\right)-5\left(x+2\right)}{x^2-4}=\dfrac{20}{4-x^2}\)
⇔ \(-\left(x+1\right)\left(x-2\right)+5\left(x+2\right)=20\)
⇔ \(-\left(x^2-2x+x-2\right)+5x+10=20\)
⇔ \(-x^2+x+2+5x+10-20=0\)
⇔ \(-x^2+6x-8=0\)
⇔ \(-\left(x^2-6x+9\right)=-1\)
⇔ \(\left(x-3\right)^2=1\)
⇔ \(\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy ...
b: \(\Leftrightarrow20-5\left(3x+2\right)>4\left(x+7\right)\)
=>20-15x-10>4x+28
=>-15x+10-4x-28>0
=>-19x-18>0
=>-19x>18
hay x<-18/19
Đặt \(x^2+3x=a\left(a>=-\dfrac{9}{4}\right)\)
BPT sẽ trở thành \(a>=2+\sqrt{5a+14}\)
=>\(a-2>=\sqrt{5a+14}\)
=>\(\sqrt{5a+14}< =a-2\)
=>\(\left\{{}\begin{matrix}a-2>=0\\5a+14< =\left(a-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\5a+14-a^2+4a-4< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\-a^2+9a+10< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\a^2-9a-10>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left(a-10\right)\left(a+1\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left[{}\begin{matrix}a>=10\\a< =-1\end{matrix}\right.\end{matrix}\right.\)
=>a>=10
=>\(x^2+3x>=10\)
=>\(x^2+3x-10>=0\)
=>(x+5)(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =-5\end{matrix}\right.\)
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
=>x^2+4x+4-x^2-10x-25<=-8x-10
=>-6x-21<=-8x-10
=>2x<=11
=>x<=11/2
\(x\left(x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)