K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2022

\(\Leftrightarrow-x+2x>9-5\)

\(\Leftrightarrow x>4\)

12 tháng 5 2022

`-x+5 > 9-2x`

`<=>-x+2x > 9-5`

`<=>x > 4`

Vậy `S={x|x > 4}`

30 tháng 3 2018

3x-5>-2x+5

⇔ 3x+2x > 5+5

⇔ 5x >5

⇔ x>1

vậy bpt có tập nghiệm là S={ x/ x>1}

12 tháng 8 2019

\(a,\frac{x+5}{x^2-2x+1}>0\)

\(\Leftrightarrow\frac{x+5}{\left(x-1\right)^2}>0\)

\(\Leftrightarrow x>-5\)

\(b,x^2+x+1>0\)

\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}>0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) ( luôn đúng)

12 tháng 8 2019

có nhé bn

2 tháng 5 2017

 \(2x+\frac{x}{2}>\frac{x+2}{3}-1\)

\(\Leftrightarrow6\cdot2x+3\cdot x>2\left(2+x\right)-1\cdot6\)

 \(\Leftrightarrow12x+3x-4-2x+6>0\)

\(\Leftrightarrow13x+2>0\Leftrightarrow x>-\frac{2}{13}\)

Vậy tập nghiệm của bất phương trình là : S = { \(\frac{-2}{13}\)}

2 tháng 5 2017

bạn sửa lại giúp mk là S = { x / x> -2/3 } viết sai nhưng chưa sửa kịp mog bạn thông cảm

\(\left(2-x\right)\left(2x-5\right)\)

Th1 : \(\hept{\begin{cases}2-x>0\\2x-5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< \frac{5}{2}\end{cases}}}\)

Th2 : \(\hept{\begin{cases}2-x< 0\\2x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>\frac{5}{2}\end{cases}}}\)

26 tháng 4 2019
https://i.imgur.com/P6uR3Wt.jpg
29 tháng 8 2020

a) ( 2x + 7 )( x2 + 9 ) > 0

Vì x2 + 9 > 0 ∀ x

Nên ta chỉ xét 2x + 7 > 0

                <=> x > -7/2

Vậy nghiệm của bất phương trình là x > -7/2

b) ( 3x - 2 )( x2 + 11 ) < 0 

Vì x2 + 11 > 0 ∀ x

Nên ta chỉ xét 3x - 2 < 0

                <=> 3x < 2

                <=> x < 2/3

Vậy nghiệm của bất phương trình là x < 2/3

c) \(\frac{2x+5}{x^2+4}\ge0\)

Vì x2 + 4 > 0 ∀ x

Nên ta chỉ xét 2x + 5 ≥ 0

                <=> 2x ≥ -5

                <=> x ≥ -5/2

Vậy nghiệm của bất phương trình là x ≥ -5/2

29 tháng 8 2020

a, \(\left(2x+7\right)\left(x^2+9\right)>0\)

Vì \(x^2+9>0\forall x\Rightarrow x>-\frac{7}{2}\)

b, \(\left(3x-2\right)\left(x^2+11\right)< 0\)

Vì \(x^2+11>0\Rightarrow x< \frac{2}{3}\)