K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2021

1 + (-2) + 3 + ( -4) + ... +2017 + (-2018) + 2019.

⇒ 1 - 2 + 3 - 4 + ... + 2017 - 2018 + 2019

⇒ (1 - 2) + (3 - 4) + ... + (2017 - 2018) + 2019

⇒ 1 + 1 + ... + 1 + 2019

Có tổng cộng số số hạng 1 là: 2018 : 2 = 1009

⇒ 1 . 1009 + 2019

⇒ 1009 + 2019

⇒ 3028

Chúc bạn học tốt 🙆‍♀️❤

1 + (-2) + 3 + ( -4) + ... +2017 + (-2018) + 2019

= ( 1 - 2 ) + ( 3 - 4 ) + ( 5 - 6 ) + ... + ( 2017 - 2018 ) + 2019

=  ( -1 ) + ( - 1) + ( - 1 ) + ... + ( - 1 )  + 2019

Dãy số đã cho có tất cả:

( 2019 - 1 ) : 1 + 1 = 2019 ( số hạng )

Kết quả của dãy số cần tính là:

{ ( - 1 ) . [ ( 2019 - 1 ) : 2 ] } + 2019 = 1010

15 tháng 3 2019

1x2x3x...2018x2019 - 1x2x3x..2018 - 1x2x3x4x...x2017x20182 

= 1x2x3x...x2018x(2019 - 1 - 2018)

= 1x2x3x...x2018x0

= 0

12 tháng 3 2018

hình như cái này đâu phải toán lớp 5 đâu bạn

12 tháng 3 2018

nhầm toán lớp 6

25 tháng 8 2021

\( S =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1} {2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right) \)

\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\) \(\Rightarrow S=P\)\)

25 tháng 8 2021

\(B=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)

\(B=1+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{1}{2018}+1\right)\)

\(B=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)

\(B=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)

ta có \(\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}=\frac{1}{2019}\)

4 tháng 6 2021

khó quá bẹn gì đấy ơi

18 tháng 2 2020

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

21 tháng 2 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????