Bài tập:Rút gọn biểu thức
Cho M=\(\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
a.Rút gọn M
b.Tính giá trị của M khi x=16
c.Tính x để M=\(\dfrac{13}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)A=\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b) Thay x=3+2\(\sqrt{2}\)
A=\(\dfrac{\sqrt{3+2\sqrt{2}}-2}{\sqrt{3+2\sqrt{2}}}\)=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2-2}}{\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
A=\(\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\)
c)Ta có \(\dfrac{\sqrt{x}-2}{\sqrt{x}}=1-\dfrac{2}{\sqrt{x}}\)>0
\(\Rightarrow\dfrac{2}{\sqrt{x}}\)<1\(\Rightarrow\sqrt{x}\)>2\(\Rightarrow x>4\)
a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)
\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{-\left(\sqrt{x}-7\right)}\)
\(=\dfrac{x-9-x+\sqrt{x}+2}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-\sqrt{x}}{\sqrt{x}-7}\)
\(=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\)
b) Ta có: \(x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)
Thay x=0 vào biểu thức \(M=\dfrac{-\sqrt{x}}{\sqrt{x}-2}\), ta được:
\(M=\dfrac{-\sqrt{0}}{\sqrt{0}-2}=-\dfrac{0}{-2}=0\)
Vậy: Khi \(x^2-4x=0\) thì M=0
Sửa đề: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)
a) Ta có: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\cdot\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2x+2\sqrt{x}+\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b) Ta có: \(x=\dfrac{3-2\sqrt{2}}{4}\)
\(\Leftrightarrow x=\dfrac{2-2\cdot\sqrt{2}\cdot1+1}{4}\)
\(\Leftrightarrow x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào biểu thức \(P=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\), ta được:
\(P=\left(3\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}-5\right):\left(2\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}+1\right)\)
\(\Leftrightarrow P=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(\Leftrightarrow P=\left(\dfrac{3\cdot\left(\sqrt{2}-1\right)}{2}-\dfrac{10}{2}\right):\left(\sqrt{2}-1+1\right)\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-3-10}{2}:\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-13}{2}\cdot\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{6-13\sqrt{2}}{2}\)
Vậy: Khi \(x=\dfrac{3-2\sqrt{2}}{4}\) thì \(P=\dfrac{6-13\sqrt{2}}{2}\)
a) ĐKXĐ: \(x>0,x\ne1\)
\(M=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right).\dfrac{1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{-4\sqrt{x}}{x-1}.\dfrac{1}{\sqrt{x}}=-\dfrac{4}{x-1}\)
b) \(M=\dfrac{x}{-3}\Rightarrow\dfrac{-4}{x-1}=\dfrac{x}{-3}\Rightarrow x^2-x=12\Rightarrow x^2-x-12=0\)
\(\Rightarrow\left(x-4\right)\left(x+3\right)=0\) mà \(x>0\Rightarrow x=4\) (thỏa)
a: \(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}+1}\cdot\dfrac{1}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{4}{\sqrt{x}+1}\)
b: Để A=-B thì \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{-4}{\sqrt{x}+1}\)
=>\(\left(\sqrt{x}+1\right)^2=-4\left(\sqrt{x}-1\right)\)
=>\(x+2\sqrt{x}+1+4\sqrt{x}-4=0\)
=>\(x+6\sqrt{x}-3=0\)
=>\(x+6\sqrt{x}+9-12=0\)
=>\(\left(\sqrt{x}+3\right)^2=12\)
=>\(\left[{}\begin{matrix}\sqrt{x}+3=2\sqrt{3}\\\sqrt{x}+3=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-2\sqrt{3}-3\left(vôlý\right)\\\sqrt{x}=2\sqrt{3}-3\end{matrix}\right.\)
=>\(\sqrt{x}=2\sqrt{3}-3\)
=>\(x=\left(2\sqrt{3}-3\right)^2=21-12\sqrt{3}\)
1.\(x=4\)
\(B=\left(\dfrac{x+1}{2}-\sqrt{x}\right)=\left(\dfrac{4+1}{2}-\sqrt{4}\right)=\dfrac{5}{2}--2=\dfrac{5-4}{2}=\dfrac{1}{2}\)
2.\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{x+1}{2}-\sqrt{x}=\dfrac{x+1-2\sqrt{x}}{2}=\dfrac{\left(\sqrt{x}-1\right)^2}{2}\)
\(M=A.B=\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{2}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
3.\(M=\dfrac{\sqrt{x}}{6}\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{6}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=6\left(\sqrt{x}-1\right)\)
\(\Leftrightarrow x+\sqrt{x}=6\sqrt{x}-6\)
\(\Leftrightarrow x-5\sqrt{x}+6=0\)
Đặt \(\sqrt{x}=a;a\ge0\)
=> pt trở thành:
\(a^2-5a+6=0\)
\(\Delta=\left(-5\right)^2-4.6=25=24=1>0\)
=> pt có 2 nghiệm:
\(\left\{{}\begin{matrix}x_1=\dfrac{5+\sqrt{1}}{2}=3\left(tm\right)\\x_2=\dfrac{5-\sqrt{1}}{2}=2\left(tm\right)\end{matrix}\right.\)
Xét \(\sqrt{a}=3\)
\(\Leftrightarrow a=9\)
Xét \(\sqrt{a}=2\)
\(\Leftrightarrow a=4\)
Vậy \(x=9;4\)
ĐKXĐ: \(x>0\)
a) Ta có: \(M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b) Vì x=16 thỏa mãn ĐKXĐ
nên Thay x=16 vào biểu thức \(M=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\), ta được:
\(M=\dfrac{16+\sqrt{16}+1}{\sqrt{16}}=\dfrac{16+4+1}{4}=\dfrac{21}{4}\)
Vậy: Khi x=16 thì \(M=\dfrac{21}{4}\)
c) Để \(M=\dfrac{13}{3}\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\dfrac{13}{3}\)
\(\Leftrightarrow3\left(x+\sqrt{x}+1\right)=13\sqrt{x}\)
\(\Leftrightarrow3x+3\sqrt{x}+3-13\sqrt{x}=0\)
\(\Leftrightarrow3x-10\sqrt{x}+3=0\)
\(\Leftrightarrow3x-\sqrt{x}-9\sqrt{x}+3=0\)
\(\Leftrightarrow\sqrt{x}\left(3\sqrt{x}-1\right)-3\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{1}{3}\\x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(nhận\right)\\x=9\left(nhận\right)\end{matrix}\right.\)
Vậy: Để \(M=\dfrac{13}{3}\) thì \(x\in\left\{\dfrac{1}{9};9\right\}\)