Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
\(=\left(1+\sqrt{2}\right)^2-\sqrt{3}^2\)
\(=1+2\sqrt{2}+2-3\)
\(=2\sqrt{2}\)
3. \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)(1)
ĐKXĐ \(x>0,x\ne1\)
pt (1) <=> \(\left(\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+1+\sqrt{x}-1\right)}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}}{x-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{\sqrt{x}\cdot2}{\sqrt{x}\cdot\left(\sqrt{x}-1\right)}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}\)
b) Để \(\sqrt{A}>A\Leftrightarrow\sqrt{\dfrac{2}{\sqrt{x}-1}}>\dfrac{2}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}>\dfrac{4}{x-2\sqrt{x}+1}\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}-\dfrac{4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\cdot\left(\sqrt{x}-1\right)-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-2-4}{x-2\sqrt{x}+1}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{2}-6}{x-2\sqrt{x}+1}>0\)
Vì \(2\sqrt{2}-6< 0\Rightarrow x-2\sqrt{x}+1< 0\)
mà \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\ge0\forall x\)
Vậy không có giá trị nào của x thỏa mãn \(\sqrt{A}>A\)
(P/s Đề câu b bị sai hay sao vậy, chả có số nào mà \(\sqrt{A}>A\) cả, check lại đề giùm với nhé)
Bài 1:
a: \(B=\dfrac{\sqrt{x}+x+\sqrt{x}-x}{1-x}\cdot\dfrac{x-1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}\)
b: Để B=-1 thì \(2\sqrt{x}=-\sqrt{x}+3\)
=>3 căn x=3
=>căn x=1
hay x=1(loại)
ĐKXĐ : \(x\ne1;x\ne0;x>0\)
a) \(A=\left(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2+4\sqrt{x}\cdot\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\dfrac{x-1}{\sqrt{x}}\right)\)
\(=\dfrac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)+4x\sqrt{x}-4\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{4x\sqrt{x}}{\sqrt{x}}=4x\)
b) \(x=\dfrac{\sqrt{6}}{2+\sqrt{6}}=\dfrac{\sqrt{6}\cdot\left(2-\sqrt{6}\right)}{-2}=\dfrac{2\sqrt{6}-6}{-2}=3-\sqrt{6}\)
Suy ra : \(A=4\cdot\left(3-\sqrt{6}\right)=12-4\sqrt{6}\)
c) \(\sqrt{A}>A\Leftrightarrow\sqrt{4x}>4x\)
\(\Leftrightarrow2\sqrt{x}>4x\)
\(\Leftrightarrow2\sqrt{x}-4x>0\)
\(\Leftrightarrow2\sqrt{x}\cdot\left(1-2\sqrt{x}\right)>0\)
\(\Rightarrow1-2\sqrt{x}>0\) (do x > 0 nên \(2\sqrt{x}>0\))
\(\Leftrightarrow1>2\sqrt{x}\)
\(\Leftrightarrow\dfrac{1}{2}>\sqrt{x}\Rightarrow x< \dfrac{1}{4}\)
Theo điều kiện suy ra giá trị của x để \(\sqrt{A}>A\) là \(0< x< \dfrac{1}{4}\)
a) \(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right)\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right)\cdot\dfrac{x-1}{\sqrt{x}}\)
\(=\left(\dfrac{2\cdot2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\left(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+4\sqrt{x}\right)\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{4\sqrt{x}+4\sqrt{x}\cdot\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=4\sqrt{x}\cdot\left[1+\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\right]\cdot\dfrac{1}{\sqrt{x}}\)
\(=4\left(1+x-1\right)\)
\(=4x\)
b) Thay \(x=\dfrac{\sqrt{6}}{2+\sqrt{6}}\) vào biểu thức A.
Ta có:
\(4\cdot\dfrac{\sqrt{6}}{2+\sqrt{6}}=\dfrac{4\sqrt{6}}{2+\sqrt{6}}=\dfrac{4\sqrt{6}\cdot\left(2-\sqrt{6}\right)}{-2}\\ =-2\sqrt{6}\cdot\left(2-\sqrt{6}\right)=-4\sqrt{6}+12\)
Vậy giá trị biểu thức A tại \(x=\dfrac{\sqrt{6}}{2+\sqrt{6}}\) là \(-4\sqrt{6}+12\)
c) Để \(\sqrt{A}>A\)
\(\Rightarrow\sqrt{4x}>4x\)
\(\Leftrightarrow\sqrt{4x}>4x\left(đk:x\ge0\right)\)
Bài 1 : Rút gọn biểu thức :
\(\left(2-\sqrt{2}\right)\left(-5\sqrt{2}\right)-\left(3\sqrt{2}-5\right)^2\)
\(=\left(-10\sqrt{2}+10\right)-\left(18-30\sqrt{2}+25\right)\)
\(=\left(-10\sqrt{2}+10\right)-\left(7-30\sqrt{2}\right)\)
\(=-10\sqrt{2}+10-7+30\sqrt{2}\)
\(=20\sqrt{2}+3\)
Bài 2:
a) ĐKXĐ : x # 4 ; x # - 4
P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
P =\(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{x+2\sqrt{x}+\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
P = \(\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b ) Để P = 2 \(\Leftrightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}\) = 2
\(\Leftrightarrow3\sqrt{x}=2\sqrt{x}+4\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\)
Vậy, để P = 2 thì x = 16.
1/
a) \(\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\dfrac{2\sqrt{2}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{2}\cdot\left(\sqrt{x}-3\right)+\sqrt{x}\cdot\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x-3}}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+\sqrt{x}+3\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{2x}-6\sqrt{2}-2x+3\sqrt{x}-3}{x+4\sqrt{x}+3}\)
bài 2 : đk : \(x\ge0;x\ne1\)
a) P = \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
P = \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
P = \(\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) P = \(\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
P = \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
P = \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(2-5\sqrt{x}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\) = \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}\)
b) P = \(\dfrac{1}{2}\) \(\Leftrightarrow\) \(\dfrac{2-5\sqrt{x}}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(\sqrt{x}+3=4-10\sqrt{x}\)
\(\Leftrightarrow\) \(11\sqrt{x}-1=0\) \(\Leftrightarrow\) \(11\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{11}\) \(x=\left(\dfrac{1}{11}\right)^2=\dfrac{1}{121}\)
1) \(M=\dfrac{10}{\sqrt{x}+2};M_{\left(16\right)}=\dfrac{10}{\sqrt{16}+2}=\dfrac{10}{6}=\dfrac{5}{3}\)
2)\(N=\dfrac{2\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{x-4}=2+\dfrac{4}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2+\dfrac{4\sqrt{x}+8+\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(N=2+\dfrac{5}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+9}{\sqrt{x}+2}\)
N khác 0 mọi x thuộc đk
\(\dfrac{M}{N}=M.\dfrac{1}{N}=\dfrac{10}{\sqrt{x}+2}.\dfrac{\sqrt{x}+2}{\left(2\sqrt{x}+9\right)}=\dfrac{10}{2\sqrt{x}+9}\)
\(\dfrac{M}{N}=\dfrac{12-\sqrt{x}}{13}=\dfrac{10}{2\sqrt{x}+9}\)
\(\Leftrightarrow\left(12-\sqrt{x}\right)\left(2\sqrt{x}+9\right)=130\)
\(15\sqrt{x}+12.9-2x=130\)
\(2x-15\sqrt{x}+22=0\)
\(\Delta_{\sqrt{x}}=15^2-4.2.22=137\)
\(\sqrt{x}=\dfrac{15+-\sqrt{137}}{4}\)
\(\left[{}\begin{matrix}x_1=\dfrac{181-15.\sqrt{137}}{8}\\x_2=\dfrac{181+15.\sqrt{137}}{8}\end{matrix}\right.\) tự kiểm tra số liểu (nhẩm tính có thể nhầm; thấy lẻ quá)
\(1.a.A=\left(1-\dfrac{\sqrt{x}}{1+\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{\sqrt{x}+2}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)=\dfrac{1}{\sqrt{x}+1}:\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{1}{\sqrt{x}+1}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\left(x\ge0;x\ne4;x\ne9\right)\)
\(b.A< 0\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow\sqrt{x}-2< 0\)
\(\Leftrightarrow x< 4\)
Kết hợp với ĐKXĐ , ta có : \(0\le x< 4\)
KL............
\(2.\) Tương tự bài 1.
\(3a.A=\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{4}{3}\)
\(\Rightarrow A_{Max}=\dfrac{4}{3}."="\Leftrightarrow x=\dfrac{1}{4}\)
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
ĐKXĐ: \(x>0\)
a) Ta có: \(M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b) Vì x=16 thỏa mãn ĐKXĐ
nên Thay x=16 vào biểu thức \(M=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\), ta được:
\(M=\dfrac{16+\sqrt{16}+1}{\sqrt{16}}=\dfrac{16+4+1}{4}=\dfrac{21}{4}\)
Vậy: Khi x=16 thì \(M=\dfrac{21}{4}\)
c) Để \(M=\dfrac{13}{3}\) thì \(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}=\dfrac{13}{3}\)
\(\Leftrightarrow3\left(x+\sqrt{x}+1\right)=13\sqrt{x}\)
\(\Leftrightarrow3x+3\sqrt{x}+3-13\sqrt{x}=0\)
\(\Leftrightarrow3x-10\sqrt{x}+3=0\)
\(\Leftrightarrow3x-\sqrt{x}-9\sqrt{x}+3=0\)
\(\Leftrightarrow\sqrt{x}\left(3\sqrt{x}-1\right)-3\left(3\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}-1=0\\\sqrt{x}-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{1}{3}\\x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{9}\left(nhận\right)\\x=9\left(nhận\right)\end{matrix}\right.\)
Vậy: Để \(M=\dfrac{13}{3}\) thì \(x\in\left\{\dfrac{1}{9};9\right\}\)