Cho đường tròn (O,R) dây cung MN (MN<2R) .Trên tia dối của tia MN lấy điểm A. từ A kẻ tiếp tuyến AAB<AC tới đường tròn O.
a) Cm A,B,C,D cùng thuộc 1 đường trong. CHỈ rõ tâm O' và bán kính của đường tròn ngoại tiếp tứ giác ABCD.
b) Cm AB2 =AC2 =AM.AN
c) GỌi I là trung điểm của MN. Kẻ BI cắt dường tròn tại E. Cm EC song song với AN
a) Sửa đề: A,B,O,C cùng thuộc 1 đường tròn
Xét tứ giác ABOC có
\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối
\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay A,B,O,C cùng thuộc một đường tròn(đpcm)
⇔A,B,O,C∈(O')
Ta có: ΔABO vuông tại B(AB⊥OB tại B)
nên B nằm trên đường tròn đường kính AO(Định lí tam giác vuông)(1)
Ta có: ΔACO vuông tại C(OC⊥AC tại C)
nên C nằm trên đường tròn đường kính AO(Định lí tam giác vuông)(2)
Từ (1) và (2) suy ra B và C cùng nằm trên đường tròn đường kính AO
⇔B,C,A,O cùng nằm trên đường tròn đường kính AO
mà B,C,A,O∈(O')(cmt)
nên O' là tâm của đường tròn đường kính AO
hay O' là trung điểm của AO
⇔Bán kính của đường tròn ngoại tiếp tứ giác ABOC là OB
b) Xét (O) có
\(\widehat{ACM}\) là góc tạo bởi tia tiếp tuyến AC và dây cung MC
\(\widehat{MNC}\) là góc nội tiếp chắn cung \(\stackrel\frown{MC}\)
Do đó: \(\widehat{ACM}=\widehat{MNC}\)(Hệ quả của góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{ACM}=\widehat{ANC}\)
Xét ΔAMC và ΔACN có
\(\widehat{ACM}=\widehat{ANC}\)(cmt)
\(\widehat{MAC}\) chung
Do đó: ΔAMC∼ΔACN(g-g)
⇔\(\dfrac{AM}{AC}=\dfrac{AC}{AN}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=AM\cdot AN\)(3)
Xét (O) có
AB là tiếp tuyến có B là tiếp điểm(gt)
AC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)
Suy ra: \(AB^2=AC^2\)(4)
Từ (3) và (4) suy ra \(AB^2=AC^2=AM\cdot AN\)(đpcm)